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1. INTRODUCTION

The high level of uncertainties in radar rainfal (RR)
estimates is a broadly acknowledged problem. However,
comprehensive information about their mathematical
structure is not available. In fact, the operational RR
products delivered by the USA National Weather Service
based on the WSR-88D stations still lack any information
on their error bounds. In our opinion, the most complete
description of RR uncertainties can be achieved by
providing the products in a probabilistic rather than
deterministic form. To advance this direction, we are
developing an empiricaly based approach to the
quantification of the functional-statistical error structure of
RR products. Our prospective goal is to create a realistic
mathematical model describing the dependence of the error
frequency distribution on RR in different situations. We
search for a parssmonious model that can have the same
mathematical form under a broad range of conditions, and
the possibly small set of parameters that can be estimated in
each dituation using the available data. At present, the
considered conditions include different distances from the
radar, seasons of the year, timescales and Z-R
relationships. In the future, when adequate data samples
become available, we will investigate the sensitivity of the
uncertainty model to different gpatia resolutions,
geographic locations and climatic regimes, precipitation
types, and different RR estimation algorithms.

In this paper, we describe the selected results of our
first large-sample modeling of RR uncertainty. We present
a functional-statistical model of RR error in its structural
form that was specifically designed for the purposes of the
probabilistic quantitative precipitation estimation (PQPE)
based on WSR-88D data. We aso discuss briefly the
applications of our modeling results to the PQPE.

Our model of RR error structure describes the
combined effect of all the error sources in RR. Since the
error structure identification applies to the final RR
products, we cal this a product-error driven (PED)
approach. The analyses are based on six years (1998-2003)
of Level Il data from the Oklahoma City radar (KTLX).
These data are uniformly processed with the Built 4 version
of the Precipitation Processing System (PPS) of the
NEXRAD (Fulton et a. 1998). The PPS-generated
products are then compared with the ground reference (GR)
based on raingauge data from two good quality surface
networks: the Oklahoma Mesonet, and the Micronet of the
Agricultural Research Service (ARS). The schematic
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of this data collection setup is shown in Figure 1.
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Fic.1. Locations of KTLX radar, and ARS Micronet
and Oklahoma Mesonet stations. The circles show the
five distance zones considered in this analysis.

We assume that, for this particular data sample, single
raingauges provide sufficiently accurate approximations of
the rainfall averaged over the PPS product grids (about 4
km by 4 km). It is justified because, for the time-scales
considered here (hourly and longer), the spatial rainfall
variability in Oklahoma is relatively small (Ciach and
Krajewski 2006) and the area-point errors do not affect our
results in a critical way. In Florida, for example, spatial
rainfall variability is much stronger than in Oklahoma
(Krajewski et al. 2003). In such regions, using single
raingauges directly as the GR for the RR uncertainty
modeling can yield spurious results.

The RR error model outlined below is based on a
functional-statistical representation of the relationship
between RR values and the corresponding true rainfall
values. The concept of such a mathematical representation
was used in Ciach and Krajewski (1999) in an idealized
parametric model, later applied to study the possible effects
of conditional biases in RR (Ciach et a. 2000). A
preliminary nonparametric data analysis using this
approach was performed by Ciach and Gebremichael
(2004) based on a small data sample. Here, we briefly
outline the selected parts of our first large-sample data
analysis aimed at developing a general RR uncertainty
model in a form suitable for the PQPE applications. More
detailed reports can be found in Ciach et al. (2007),
Villarini et a. (2007), and other forthcoming publications.



2. MODELING AND ESTIMATION METHODS

We define true rainfall as the volume of rain-water
falling on a specified area in a specified interval of time.
Various rainfall estimates are just approximations of this
physical quantity over given spatiotemporal domains. We
define the uncertainties of RR as all discrepancies between
the values of a RR product and the corresponding
(concurrent and collocated) values of the true rainfall.

We assume that RR uncertainty can be fully described
by the family of bivariate distributions of RR values, R,,
and corresponding true rainfal, R,,., conditioned on the
major factors affecting the distributions. These factors
include the spatiotemporal scale, the distance from the
radar, the synoptic regime, and the specifics of a RR
estimation system. The bivariate frequency distributions
can be determined from large samples of RR products and
corresponding raingauge data, if the raingauges can provide
sufficiently accurate approximations of R,.,.. Next, we can
identify a functional-statistical model of the R-R,,.
relationship that has well defined mathematical structure.

Lets consider RR products with specified resolution
and other conditions. To describe the R,-R,,,. relationship,
we use the following functional-statistical representation:

R, =h(R)eR), (1)

where A(-) is a deterministic distortion function
describing conditional biases depending on R,, and e(:) isa
random variable representing the combined effect of al
random error sources. The distribution of the random
component can aso depend on R,.. In this specific
representation, R,,. is a random variable describing
possible values of the true rainfall that can occur at a given
value of the R, product. Therefore, this model fits well the
PQPE objectives. To identify the model based on a sample
of the available R,-R,,,. pairs, we need to estimate 4(R,) and
the distributions of e(R,) conditioned on R, values. Then,
the model can be applied to predict the distributions of the
unknown R, given the R, values.

Because all systematic biases can be described by the
deterministic distortion component, we can assume without
any loss of generaity that E{e(R,)|R=r}=1 for any r,
value. For thisto betrue, it is sufficient that we determine
h(-) formally as the conditional expectation function:

h(r,) =E{R,,.|R. =1}, )

true

true

In the conditional expectations above R, is a random
variable and r, is its specified value, according to the
commonly used statistical convention. The deterministic
distortion function can be estimated using a nonparametric
regression framework. The estimator used here is the
kernel regression (e.g., Hardle 1990; Simonoff 1996) in the
form of the following moving-window weighted averaging:

Z(W[ngl.)

h(r’):iz—w r_]; ri y

where w; are the weighting factors and & is a parameter
that governs the size of the averaging window centered

geometrically on r,. The averaging weights, w;, depend on
the positions of the R,; points within the moving window
according to a parabolic function.

Once the A(-) function is known, we can determine the
multiplicative random component as:

true . (4)

Although its conditional mean is equal to one for each
R,=r,, its distribution depends on r,.. The first step to
identify this dependence is estimating the conditional
variance, ¢.’(r)=Var{e(R)IR=r}, a a function of 7,
This is done similarly to estimating the A(r,) function. The
specific nonparametric regression procedures used above
are described in more detail in Ciach (2003) and Ciach et
al. (2006).

To get more insight into the conditional distributions
of the e(R,) component, we also estimate its conditional
quantiles, ¢, at selected levels of the probability of non-
exceedance, p. They can be defined formally through:

Prie(®)<q,|R =1} =p, ©)

where Pr{-|} is the conditional probability and g,
depends on r, for each p. Consistently with the 4(r,) and
o.r,) functions, we estimate ¢,(r,) functions using a
nonparametric “weighted-point-counting” procedure (Ciach
et al. 2006).

Apart from its probability distribution, another
important characteristic of RR error is its spatiotemporal
dependency structure. At this stage of our research, we
address this aspect in a limited scope by estimating the
spatial and temporal correlation functions of the e(R,)
component.

3. SELECTED RESULTS

The key element of our RR uncertainty model
development is the extensive exploratory data analysis
based on alarge sample of RR products and corresponding
raingauge data. The 6-year-long sample alows us to
estimate the model components for different seasons and
distances from the radar. We partitioned the whole dataset
into three seasons. cold (January, February, March,
November, and December), warm (April, May, and
October) and hot (June, July, August, and September). To
capture the range effects, we divided the radar umbrella
into the following five distance zones: 0-75, 70-105, 100-
145, 140-185, 180-225 km.

3.1 Deterministic Distortion Function

The conditional expectation of the true rainfall
depends on the RR magnitude. This behavior is called a
conditional bias (Katz and Murphy 1997) and it is
described by the deterministic distortion function in (1).



The nonparametric estimates of 4(r,) were obtained at four
time scales (1, 3, 6, 24 hours), for the five distance zones
and the three seasons defined above. For brevity, we
present in Figure 2 the estimates for the hourly scale only.
However, the general shape of these functions holds aso
for the other time-scales.

35| Cold Season | Warm Season
304 a
25 .
20]
15 / |
—_— 10 - i
E | }/s—/
e 54 4
S {
P e
n
I_ 40
EZ"- 35 Hot Season | Entire Dataset
ﬁT 304

o 5 0 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

R, (mm)

FiGg. 2. The A(r,) function for three seasons and
entire dataset, and in the five distance zones.

Figure 2 shows that the 4(r,) curves tend to bend
towards the r,-axis for higher RR values. For the distances
up to 180 km and for the warm and hot seasons, the
conditional biases in Figure 1 do not show any significant
range dependence, and the curves for Zones I1-1V have no
systematic arrangement.

3.2 Standard Deviation of Random Component

While the deterministic distortion function describe
the systematic effects in the R,-R,,,. relationship modeled
by (1), the random component, e(R,), is a stochastic process
accounting for the remaining random uncertainties. Its
expectation is always equal to one, thanks to the definition
of the deterministic component given by the expression (2).
However, its standard deviation, o.(r,), is a function of the
RR values. We estimated this function for different
seasons, distance zones, and time-scales using the
nonparametric regression estimator analogical to (3). The
results for the 1-hour accumulation interval are presented in
Figure 3.

In general, al the nonparametric estimates of the o,(r,)
function exhibit a hyperbolic behavior growing to infinity
for r. closing to zero, and decreasing to a constant
asymptotic level for growing RR values. For the warm and
hot seasons, the distance dependences are as expected:
o,(r,) becomes larger as the distance from the radar
increases. An exception from this regular behavior is the
cold season, where any clear distance pattern is not
distinguishable.
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Fic. 3. The o.(r,) function for three seasons and
entire dataset, and in the five distance zones.

3.3 Effect of different Z-R Relationships

Both the deterministic and random component in the
RR uncertainty model (1) depend strongly on the Z-R
relationship selected in the PPS processing of the raw
reflectivity data. These effects are presented in Figures 4
and 5. They were computed for the Zone Il only because it
contains the largest number of raingauges.
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FiG. 4. The dependence of the A(r,) function on the
Z-R relationship, for three seasons and entire
dataset.
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dataset.

The RR error model components for three commonly
used power-law Z-R parameter sets are shown in these
figures: the standard NEXRAD (4=300, b=1.4) discussed
in the previous sections, as well as the Marshall-Palmer
(4=200, b=1.6) and the “tropical” (4=250, b=1.2)
relationships.

The surprising feature of these results is that both the
Marshal-Pamer and the “tropicd” Z-R conversion
functions results in quite similar departures from the
standard NEXRAD relationship. For the deterministic
component in Figure 5, the change of the conditional bias
in the same direction is counterintuitive. Based on our
previous analytical studies (Ciach and Krgewski 1999,
Ciach at al. 2000), we expected the 4(r,) function for b=1.2
to be above the standard NEXRAD curve in the region of
moderate and strong RR values. The fact that the change is
in the opposite direction is difficult to explain. One
possible cause could be a dramatic increase of the
uncertainty level in the PPS products for any departures
from the standard Z-R relationship. In our opinion, this
might indicate some inconsistencies in the PPS algorithm in
respect to its parameter selection. This suspicion is
supported by the much higher levels of the standard
deviations of the random component for the Z-R’s different
from the standard (Figure 5). Based on our early study by
Ciach et. a. (1997), we expected the level of the o.(r,)
function to be lower for the Marshal-Palmer than for the
standard Z-R relationship. More detailed investigation is
needed to resolve this new “cognitive dissonance.”

3.4 Conditional Distributions of Random Component

The conditional distributions of the random
component, e(R,), can be described by the conditional
quantile functions, ¢,(r,), defined by (5) for any non-
exceedance probability threshold. For graphical illustration

we use five levels of this threshold (10%, 25%, 50%, 75%
and 90%). An example of the resultsis shown in Figure 6.
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FiG. 6. Theg,(r,) functionsfor the entire dataset for
five levels of non-exceedance probability, in five
distance zones. The dotted curves are based on the
empirical estimates, and the continuous curves are
their approximations based on the Gaussian model.

These results are for the standard NEXRAD Z-R
relationship and all three seasons (“entire dataset”). The
data-based estimates are compared with their analytical
approximations based on the normal distribution model.
The mean of this distribution is set to one, whereas its
conditional standard deviations are based on the empirical
estimates in Figure 3. In Zones I-I11, the accuracy of this
simple approximation is quite good especially for moderate
and strong RR values, which are most significant in
hydrology. In Zones V-V, the departures can be attributed
to a change in the RR errors at large distances. But these
samples are too small to make a conclusive inference on it.

4. PQPE APPLICATIONS

As mentioned before, the functional-statistical model
of RR uncertainties described here can be used for the
probabilistic quantitative precipitation estimation (PQPE)
based on WSR-88D data. In the specific representation
given by (1), the probable true rainfall corresponding to the
observed RR is arandom variable. Its distribution depends
in a specific way on the given values of the RR product.
This model not only accounts for the presence of
conditional and unconditional biases, but also characterizes
the random error component in terms of its statistical



distribution and its spatiotemporal correlations (nor shown
here). Thus, the PQPE objectives can be met when the two
components of the RR error model (1) are known.

A description of two specific PQPE applications of the
RR error model can be found in Villarini et al. (2007). The
first is the conditional simulation of spatiotemporal rainfall
ensembles, and the second is the estimation of true rainfall
probability maps. In the former, a user can generate
ensembles of probable true rainfall fields that are consistent
with the uncertainty structure of given RR products. The
simulation of the random component in this application is
based on the Cholesky decomposition method. The method
provides the flexibility to account for the spatiotemporal
correlations in the random component, as well as for its
dependence on the given RR. In the latter application, the
static maps showing the exceedance probability of selected
rainfall thresholds are produced, given a RR map and the
information on its uncertainty. They provide the answer to
the question typical in operational hydrology: “What is the
probability that, for the RR values observed over an area,
the corresponding actual rainfall values exceed a specified
threshold?’ In both of the above PQPE applications, the
Gaussian distributions of the random component have to be
truncated from below to avoid negative values.

5. CONCLUSIONS

We presented a RR uncertainty model that can be
applied to the PQPE based on weather radar data. Its
components are estimated based on a six-year-long sample
of RR products and the GR based on the corresponding
raingauge data. Up to date, the main findings in this
prospective research (only small part of our results could be
shown here) can be enumerated as follows:

1. The RR uncertainty model (1) is a two-component
functional-statistical representation of the relationship
between RR and the corresponding true. Its form is
suitable for the PQPE applications.

2. The RR products contain considerable conditional biases
(systematic distortions dependent on RR values) that
have to be quantified in any complete RR error model.

3. The standard deviation of the random component in (1)
is a decreasing function of RR that is converging to a
constant non-zero asymptote for large RR vaues.

4. The two components of (1) can be parameterized using
analytical approximations based on power-law functions.

5. The conditional distributions of the random component
can be approximated with the Gaussian model.

6. The random component is correlated in time and space.

The fact that the random component in (1) is nearly
Gaussian-distributed simplifies its tractability. Concerning
the spatiotemporal correlations in the random component,
the estimates obtained so far are fairly inaccurate. In our
future research, we need to find better methods to describe
the dependences in the RR errors. Although we believe
that the general structure of our model is transferable to
different RR products and radar sites, the specific effects of
such changes need to be further investigated based on
adequate data samples.
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