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1.  INTRODUCTION 
The high level of uncertainties in radar rainfall (RR) 

estimates is a broadly acknowledged problem.  However, 
comprehensive information about their mathematical 
structure is not available.  In fact, the operational RR 
products delivered by the USA National Weather Service 
based on the WSR-88D stations still lack any information 
on their error bounds.  In our opinion, the most complete 
description of RR uncertainties can be achieved by 
providing the products in a probabilistic rather than 
deterministic form.  To advance this direction, we are 
developing an empirically based approach to the 
quantification of the functional-statistical error structure of 
RR products.  Our prospective goal is to create a realistic 
mathematical model describing the dependence of the error 
frequency distribution on RR in different situations.  We 
search for a parsimonious model that can have the same 
mathematical form under a broad range of conditions, and 
the possibly small set of parameters that can be estimated in 
each situation using the available data.  At present, the 
considered conditions include different distances from the 
radar, seasons of the year, time-scales and Z-R 
relationships.  In the future, when adequate data samples 
become available, we will investigate the sensitivity of the 
uncertainty model to different spatial resolutions, 
geographic locations and climatic regimes, precipitation 
types, and different RR estimation algorithms. 

In this paper, we describe the selected results of our 
first large-sample modeling of RR uncertainty.  We present 
a functional-statistical model of RR error in its structural 
form that was specifically designed for the purposes of the 
probabilistic quantitative precipitation estimation (PQPE) 
based on WSR-88D data.  We also discuss briefly the 
applications of our modeling results to the PQPE. 

Our model of RR error structure describes the 
combined effect of all the error sources in RR.  Since the 
error structure identification applies to the final RR 
products, we call this a product-error driven (PED) 
approach.  The analyses are based on six years (1998-2003) 
of Level II data from the Oklahoma City radar (KTLX).  
These data are uniformly processed with the Built 4 version 
of the Precipitation Processing System (PPS) of the 
NEXRAD (Fulton et al. 1998).  The PPS-generated 
products are then compared with the ground reference (GR) 
based on raingauge data from two good quality surface 
networks: the Oklahoma Mesonet, and the Micronet of the 
Agricultural Research Service (ARS).  The schematic 
________________________________________________ 
* Corresponding author: Grzegorz J. Ciach, University of 
Iowa, IIHR–Hydroscience&Engineering, 100 Stanley 
Hydraulics Laboratory, Iowa City, IA 52242-1585, USA;  
e-mail: g-ciach@uiowa.edu 

 
of this data collection setup is shown in Figure 1. 

 
FIG.1.  Locations of KTLX radar, and ARS Micronet 
and Oklahoma Mesonet stations.  The circles show the 
five distance zones considered in this analysis. 

 
We assume that, for this particular data sample, single 

raingauges provide sufficiently accurate approximations of 
the rainfall averaged over the PPS product grids (about 4 
km by 4 km).  It is justified because, for the time-scales 
considered here (hourly and longer), the spatial rainfall 
variability in Oklahoma is relatively small (Ciach and 
Krajewski 2006) and the area-point errors do not affect our 
results in a critical way.  In Florida, for example, spatial 
rainfall variability is much stronger than in Oklahoma 
(Krajewski et al. 2003).  In such regions, using single 
raingauges directly as the GR for the RR uncertainty 
modeling can yield spurious results. 

The RR error model outlined below is based on a 
functional-statistical representation of the relationship 
between RR values and the corresponding true rainfall 
values.  The concept of such a mathematical representation 
was used in Ciach and Krajewski (1999) in an idealized 
parametric model, later applied to study the possible effects 
of conditional biases in RR (Ciach et al. 2000).  A 
preliminary nonparametric data analysis using this 
approach was performed by Ciach and Gebremichael 
(2004) based on a small data sample.  Here, we briefly 
outline the selected parts of our first large-sample data 
analysis aimed at developing a general RR uncertainty 
model in a form suitable for the PQPE applications.  More 
detailed reports can be found in Ciach et al. (2007), 
Villarini et al. (2007), and other forthcoming publications. 
 

 



 

2.  MODELING AND ESTIMATION METHODS 
We define true rainfall as the volume of rain-water 

falling on a specified area in a specified interval of time.  
Various rainfall estimates are just approximations of this 
physical quantity over given spatiotemporal domains.  We 
define the uncertainties of RR as all discrepancies between 
the values of a RR product and the corresponding 
(concurrent and collocated) values of the true rainfall. 

We assume that RR uncertainty can be fully described 
by the family of bivariate distributions of RR values, Rr, 
and corresponding true rainfall, Rtrue, conditioned on the 
major factors affecting the distributions.  These factors 
include the spatiotemporal scale, the distance from the 
radar, the synoptic regime, and the specifics of a RR 
estimation system.  The bivariate frequency distributions 
can be determined from large samples of RR products and 
corresponding raingauge data, if the raingauges can provide 
sufficiently accurate approximations of Rtrue.  Next, we can 
identify a functional-statistical model of the Rr-Rtrue 
relationship that has well defined mathematical structure. 

Lets consider RR products with specified resolution 
and other conditions.  To describe the Rr-Rtrue relationship, 
we use the following functional-statistical representation: 

 

  , (1) ( ) ( )rrtrue ReRhR ⋅=
where h(⋅) is a deterministic distortion function 

describing conditional biases depending on Rr, and e(⋅) is a 
random variable representing the combined effect of all 
random error sources. The distribution of the random 
component can also depend on Rr.  In this specific 
representation, Rtrue is a random variable describing 
possible values of the true rainfall that can occur at a given 
value of the Rr product.  Therefore, this model fits well the 
PQPE objectives.  To identify the model based on a sample 
of the available Rr-Rtrue pairs, we need to estimate h(Rr) and 
the distributions of e(Rr) conditioned on Rr values.  Then, 
the model can be applied to predict the distributions of the 
unknown Rtrue, given the Rr values. 

Because all systematic biases can be described by the 
deterministic distortion component, we can assume without 
any loss of generality that E{e(Rr)|Rr=rr}=1 for any rr 
value.  For this to be true, it is sufficient that we determine 
h(·) formally as the conditional expectation function: 

 { }rrtruer rRRrh == E)(  , (2) 
 

In the conditional expectations above Rr is a random 
variable and rr is its specified value, according to the 
commonly used statistical convention.  The deterministic 
distortion function can be estimated using a nonparametric 
regression framework.  The estimator used here is the 
kernel regression  (e.g., Hardle 1990; Simonoff 1996) in the 
form of the following moving-window weighted averaging: 
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where wi are the weighting factors and k is a parameter 
that governs the size of the averaging window centered 

geometrically on rr.  The averaging weights, wi, depend on 
the positions of the Rr,i points within the moving window 
according to a parabolic function. 

Once the h(⋅) function is known, we can determine the 
multiplicative random component as: 
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Although its conditional mean is equal to one for each 

Rr=rr, its distribution depends on rr.  The first step to 
identify this dependence is estimating the conditional 
variance, σe

2(rr)=Var{e(Rr)|Rr=rr}, as a function of rr.  
This is done similarly to estimating the h(rr) function.  The 
specific nonparametric regression procedures used above 
are described in more detail in Ciach (2003) and Ciach et 
al. (2006). 

To get more insight into the conditional distributions 
of the e(Rr) component, we also estimate its conditional 
quantiles, qp, at selected levels of the probability of non-
exceedance, p.  They can be defined formally through: 
 

 ( ){ } prRqRe rrpr ==≤Pr  , (5) 

 
where Pr{·|·} is the conditional probability and qp 

depends on rr for each p.  Consistently with the h(rr) and 
σe(rr) functions, we estimate qp(rr) functions using a 
nonparametric “weighted-point-counting” procedure (Ciach 
et al. 2006). 

Apart from its probability distribution, another 
important characteristic of RR error is its spatiotemporal 
dependency structure.  At this stage of our research, we 
address this aspect in a limited scope by estimating the 
spatial and temporal correlation functions of the e(Rr) 
component. 

 
 

3.  SELECTED RESULTS 
The key element of our RR uncertainty model 

development is the extensive exploratory data analysis 
based on a large sample of RR products and corresponding 
raingauge data.  The 6-year-long sample allows us to 
estimate the model components for different seasons and 
distances from the radar.  We partitioned the whole dataset 
into three seasons: cold (January, February, March, 
November, and December), warm (April, May, and 
October) and hot (June, July, August, and September).  To 
capture the range effects, we divided the radar umbrella 
into the following five distance zones: 0-75, 70-105, 100-
145, 140-185, 180-225 km. 

 
3.1  Deterministic Distortion Function 

The conditional expectation of the true rainfall 
depends on the RR magnitude.  This behavior is called a 
conditional bias (Katz and Murphy 1997) and it is 
described by the deterministic distortion function in (1).  

 



 

The nonparametric estimates of h(rr) were obtained at four 
time scales (1, 3, 6, 24 hours), for the five distance zones 
and the three seasons defined above.  For brevity, we 
present in Figure 2 the estimates for the hourly scale only.  
However, the general shape of these functions holds also 
for the other time-scales. 
 

 
FIG. 2.  The h(rr) function for three seasons and 
entire dataset, and in the five distance zones. 

 
Figure 2 shows that the h(rr) curves tend to bend 

towards the rr-axis for higher RR values.  For the distances 
up to 180 km and for the warm and hot seasons, the 
conditional biases in Figure 1 do not show any significant 
range dependence, and the curves for Zones II-IV have no 
systematic arrangement. 
 
3.2  Standard Deviation of Random Component 

While the deterministic distortion function describe 
the systematic effects in the Rr-Rtrue relationship modeled 
by (1), the random component, e(Rr), is a stochastic process 
accounting for the remaining random uncertainties.  Its 
expectation is always equal to one, thanks to the definition 
of the deterministic component given by the expression (2).  
However, its standard deviation, σe(rr), is a function of the 
RR values.  We estimated this function for different 
seasons, distance zones, and time-scales using the 
nonparametric regression estimator analogical to (3).  The 
results for the 1-hour accumulation interval are presented in 
Figure 3. 

In general, all the nonparametric estimates of the σe(rr) 
function exhibit a hyperbolic behavior growing to infinity 
for rr closing to zero, and decreasing to a constant 
asymptotic level for growing RR values.  For the warm and 
hot seasons, the distance dependences are as expected: 
σe(rr) becomes larger as the distance from the radar 
increases.  An exception from this regular behavior is the 
cold season, where any clear distance pattern is not 
distinguishable. 
 

 
FIG. 3.  The σe(rr) function for three seasons and 
entire dataset, and in the five distance zones. 

 
 

3.3  Effect of different  Z-R  Relationships 
Both the deterministic and random component in the 

RR uncertainty model (1) depend strongly on the Z-R 
relationship selected in the PPS processing of the raw 
reflectivity data.  These effects are presented in Figures 4 
and 5.  They were computed for the Zone II only because it 
contains the largest number of raingauges.   

 
FIG. 4.  The dependence of the h(rr) function on the 
Z-R relationship, for three seasons and entire 
dataset. 

 

 



 

 
FIG. 5.  The dependence of the σe(rr) function on the 
Z-R relationship, for three seasons and entire 
dataset. 

 
The RR error model components for three commonly 

used power-law Z-R parameter sets are shown in these 
figures: the standard NEXRAD (A=300, b=1.4) discussed 
in the previous sections, as well as the Marshall-Palmer 
(A=200, b=1.6) and the “tropical” (A=250, b=1.2) 
relationships.  

The surprising feature of these results is that both the 
Marshal-Palmer and the “tropical” Z-R conversion 
functions results in quite similar departures from the 
standard NEXRAD relationship.  For the deterministic 
component in Figure 5, the change of the conditional bias 
in the same direction is counterintuitive.  Based on our 
previous analytical studies (Ciach and Krajewski 1999, 
Ciach at al. 2000), we expected the h(rr) function for b=1.2 
to be above the standard NEXRAD curve in the region of 
moderate and strong RR values.  The fact that the change is 
in the opposite direction is difficult to explain.  One 
possible cause could be a dramatic increase of the 
uncertainty level in the PPS products for any departures 
from the standard Z-R relationship.  In our opinion, this 
might indicate some inconsistencies in the PPS algorithm in 
respect to its parameter selection.  This suspicion is 
supported by the much higher levels of the standard 
deviations of the random component for the Z-R’s different 
from the standard (Figure 5).  Based on our early study by 
Ciach et. al. (1997), we expected the level of the σe(rr) 
function to be lower for the Marshal-Palmer than for the 
standard Z-R relationship.  More detailed investigation is 
needed to resolve this new “cognitive dissonance.” 
 
3.4  Conditional Distributions of Random Component 

The conditional distributions of the random 
component, e(Rr), can be described by the conditional 
quantile functions, qp(rr), defined by (5) for any non-
exceedance probability threshold.  For graphical illustration 

we use five levels of this threshold (10%, 25%, 50%, 75% 
and 90%).  An example of the results is shown in Figure 6. 
 

 
FIG. 6.  The qp(rr) functions for the entire dataset for 
five levels of non-exceedance probability, in five 
distance zones.  The dotted curves are based on the 
empirical estimates, and the continuous curves are 
their approximations based on the Gaussian model. 

 
These results are for the standard NEXRAD Z-R 

relationship and all three seasons (“entire dataset”).  The 
data-based estimates are compared with their analytical 
approximations based on the normal distribution model.  
The mean of this distribution is set to one, whereas its 
conditional standard deviations are based on the empirical 
estimates in Figure 3.  In Zones I-III, the accuracy of this 
simple approximation is quite good especially for moderate 
and strong RR values, which are most significant in 
hydrology.  In Zones IV-V, the departures can be attributed 
to a change in the RR errors at large distances.  But these 
samples are too small to make a conclusive inference on it. 
 

 
4.  PQPE APPLICATIONS 

As mentioned before, the functional-statistical model 
of RR uncertainties described here can be used for the 
probabilistic quantitative precipitation estimation (PQPE) 
based on WSR-88D data.  In the specific representation 
given by (1), the probable true rainfall corresponding to the 
observed RR is a random variable.  Its distribution depends 
in a specific way on the given values of the RR product.  
This model not only accounts for the presence of 
conditional and unconditional biases, but also characterizes 
the random error component in terms of its statistical 

 



 

distribution and its spatiotemporal correlations (nor shown 
here).  Thus, the PQPE objectives can be met when the two 
components of the RR error model (1) are known. 

A description of two specific PQPE applications of the 
RR error model can be found in Villarini et al. (2007).  The 
first is the conditional simulation of spatiotemporal rainfall 
ensembles, and the second is the estimation of true rainfall 
probability maps.  In the former, a user can generate 
ensembles of probable true rainfall fields that are consistent 
with the uncertainty structure of given RR products.  The 
simulation of the random component in this application is 
based on the Cholesky decomposition method.  The method 
provides the flexibility to account for the spatiotemporal 
correlations in the random component, as well as for its 
dependence on the given RR.  In the latter application, the 
static maps showing the exceedance probability of selected 
rainfall thresholds are produced, given a RR map and the 
information on its uncertainty.  They provide the answer to 
the question typical in operational hydrology: “What is the 
probability that, for the RR values observed over an area, 
the corresponding actual rainfall values exceed a specified 
threshold?”  In both of the above PQPE applications, the 
Gaussian distributions of the random component have to be 
truncated from below to avoid negative values. 

 
 

5.  CONCLUSIONS 
We presented a RR uncertainty model that can be 

applied to the PQPE based on weather radar data.  Its 
components are estimated based on a six-year-long sample 
of RR products and the GR based on the corresponding 
raingauge data.  Up to date, the main findings in this 
prospective research (only small part of our results could be 
shown here) can be enumerated as follows: 
1. The RR uncertainty model (1) is a two-component 

functional-statistical representation of the relationship 
between RR and the corresponding true.  Its form is 
suitable for the PQPE applications. 

2. The RR products contain considerable conditional biases 
(systematic distortions dependent on RR values) that 
have to be quantified in any complete RR error model. 

3. The standard deviation of the random component in (1) 
is a decreasing function of RR that is converging to a 
constant non-zero asymptote for large RR values. 

4. The two components of (1) can be parameterized using 
analytical approximations based on power-law functions. 

5. The conditional distributions of the random component 
can be approximated with the Gaussian model. 

6. The random component is correlated in time and space. 
The fact that the random component in (1) is nearly 

Gaussian-distributed simplifies its tractability.  Concerning 
the spatiotemporal correlations in the random component, 
the estimates obtained so far are fairly inaccurate.  In our 
future research, we need to find better methods to describe 
the dependences in the RR errors.  Although we believe 
that the general structure of our model is transferable to 
different RR products and radar sites, the specific effects of 
such changes need to be further investigated based on 
adequate data samples. 
 

Acknowledgments.  This work was supported by the NSF 
grant EAR-0309644 and the contract under the PQPE 
initiative by the National Weather Service.  The opinions 
expressed here are of the authors and do not necessarily 
reflect those of NSF or NOAA or their sub-agencies. 
 
REFERENCES 
Ciach, G.J., W.F. Krajewski, E.N. Anagnostou, J.A. Smith, 

M.L. Baeck, J.R. McCollum, and A. Kruger, 1997: 
Radar rainfall estimation for Ground Validation studies 
of the Tropical Rainfall Measuring Mission.  J. Appl. 
Meteor., 36, 735-47. 

Ciach, G.J., and W.F. Krajewski, 1999: Radar-rain gauge 
comparisons under observational uncertainties.  Journal 
of Applied Meteorology, 38, 1519-1525. 

Ciach, G.J., M.L. Morrissey, and W.F. Krajewski, 2000: 
Conditional bias in radar rainfall estimation.  Journal of 
Applied Meteorology, 39(11), 1941-46. 

Ciach, G.J., 2003: Local random errors in tipping-bucket 
raingauge measurements,  Journal of Atmospheric and 
Oceanic Technology, 20, 752-759. 

Ciach, G.J., and M.V. Gebremichael, 2004: Empirical 
modeling of the uncertainties in radar rainfall estimates. 
Preprints: 6th Int. Symp. on Hydrol. Appl. of Weather 
Radar, Melbourne, Australia, February 2-4, 2004. 

Ciach, G.J., and W.F. Krajewski, 2006: Analysis and 
modeling of spatial correlation structure of small-scale 
rainfall in Central Oklahoma.  Adv. Water Resour., 29, 
1450-1463. 

Ciach, G.J., W.F. Krajewski, and G. Villarini, 2007: 
Product-Error-Driven Uncertainty Model for 
Probabilistic Quantitative Precipitation Estimation with 
NEXRAD Data.  J. Hydrometeorology, (in print). 

Fulton, R.A., J.P. Breidenbach, D.J. Seo, and D.A. Miller, 
1998: WSR-88D rainfall algorithm.  Weather and 
Forecasting, 13, 377-395. 

Habib, E., G.J. Ciach, and W.F. Krajewski, 2004: A 
method for filtering out raingauge representativeness 
errors from the verification distributions of radar and 
raingauge rainfall  Adv. Water Resour., 27(10), 967–98. 

Hardle, W., 1990: Applied Nonparametric regression. 
Cambridge University Press, 333 pp. 

Katz, R.W., and A.H. Murphy (Editors), 1997: Economic 
Value of Weather and Climate Forecasts. Cambridge 
University Press, 222 pp. 

Krajewski, W.F., G.J. Ciach, and E. Habib, 2003: An 
analysis of small-scale rainfall variability in different 
climatic regimes.  Hydrol. Sci. J., 48, 151-162. 

Simonoff, J.S., 1996: Smoothing Methods in Statistics, 
Springer-Verlag, 338 pp. 

Villarini, G., W.F. Krajewski, and G.J. Ciach, 2007: 
Product-Error-Driven Ensemble Generator of 
Spatiotemporal Rainfall Conditioned on WSR-88D 
Precipitation Estimates and its Application in Hydrologic 
Forecasting.  (in preparation). 

 

 


	1.  INTRODUCTION 
	2.  MODELING AND ESTIMATION METHODS 
	3.  SELECTED RESULTS 
	3.1  Deterministic Distortion Function 
	3.2  Standard Deviation of Random Component 
	3.3  Effect of different  Z-R  Relationships 
	3.4  Conditional Distributions of Random Component 
	4.  PQPE APPLICATIONS 
	5.  CONCLUSIONS 
	REFERENCES 


