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1. INTRODUCTION

Much effort has been put last years to assimilate
radar observations (both reflectivity and radial
velocity) into Numerical Weather Prediction (NWP)
models (see, among others, Errico et al. 2000;
MacPherson et al. 2003; Sun and Wilson 2003; Sun
2005). Moreover, as the model resolutions increase
denser observations are required, and the resolution
and coverage of the observations of radar networks
make them very appropriate to be assimilated

However, the assimilation of radar observations
has been implemented under a number of simplifying
assumptions. For example, variational assimilation
schemes explicitly require the error covariance matrix
of the observations. In the case of radar
measurements, their assimilation would require the
characterization of their error covariance matrix.
However, most of the existing schemes assume very
simplifying hypotheses (namely, that these errors are
homogeneous and not correlated).

The main purpose of the present study is to
propose a physically based approach to deriving the
error covariance matrix of radar rainfall estimates.
Here, we do it for stratiform situations.

Recently, Germann et al. 2006 identified two main
ways of characterizing the structure of the errors
affecting radar rainfall estimates:

- Use an independent source of information as
reference (such as rain gauges), and study the
structure of the residuals between radar rainfall
and the reference.

- Examine all relevant sources of error separately
by simulation and/or experimental data analysis.

Here we opt for the second approach, which,
besides characterization of the error covariance
matrix of radar rainfall estimates, it allows us to better
understand the physics and the role of the principal
sources of errors, as well as their interactions, and in
principle, to make the matrix adaptable to different
meteorological situations.

2. FRAMEWORK OF THE STUDY

Due to the complexity of studying all the errors
affecting radar rainfall estimates (see the reviews of
Zawadzki 1984; Austin 1987; Joss and Waldvogel
1990), in this study we will focus on the two dominant
sources of uncertainty in radar rainfall estimates at S-
band:

- Range effects: which include the errors due to
the increase of sampling volume and increase of
the height of observations with range.
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- The uncertainty associated to the transformation
of radar reflectivity, Z, measurements into rain
rate, R.

We analyze the structure of these two sources of
error separately and examine the cross correlation
between the two.
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Fig. 1. 1.1 km-height CAPPI for 2333 UTC 16
September 1999. The yellow contour corresponds to
the area from which observations have been used to
simulate range-effects.
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Fig. 2. Example of the 1.1 km-height CAPPI of the non-
conformal  simulations  obtained for the real
measurements observed in the selected near-range
sector of reference (see figure 1).

3. RANGE EFFECTS
3.1 Data used

The data set we used to characterize the error due
to range effects is that used by Bellon et al. 2005,



which consists of 287 hours of volumetric scans
measured with the McGill S-band radar during 33
events of stratiform precipitation in Montreal, Quebec
(Canada).

3D-reflectivity data over an area of 20 km by 200°
close to the radar (yellow contour in figure 1) have
been used to simulate radar measurements at further
ranges by convolving real observations with the radar
beam pattern (assumed Gaussianl -Doviak and Zrnic
1993-; more details of this simulation may be found in
Bellon et al. 2005). Original observations (located at
ranges between 15 and 35 km) have been considered
to not be significantly affected by range effects and,
thus, they have been used as the reference to which
simulations at further ranges are be compared.

Figure 2 shows an example of the simulated
observations generated for 5 sectors between 40 and
200 km every 40 km for the case presented in figure
1. The two main factors with range can be clearly
observed: at further ranges, observations are
obtained at higher elevations (the melting layer
signature —the bright band- can be clearly appreciated
in the simulations beyond 120 km) and the sampling
volume becomes bigger.

In this framework, the error due to range effects is
defined as:

¢,(r.h) = dBZ (r,h) - dBZ(r,,h,) [1l

Where dBZ*(r,h) are the reflectivity simulations at
range r and height h, and dBZ(ro,ho) are the reflectivity
observations at the reference height (1.1 km) in the
reference sector shown in figure 1.

3.2 Characterization of the error

Bellon et al. 2005 have already quantified the
mean error introduced by range effects and its
variability. The mean error as a function of range and
height of the observations for two particular range of
bright band heights is shown in figure 3. This figure
shows that the bias is kept within narrow limits below
the bright band (BB); the BB introduces a severe
overestimation of the reflectivity at ground; above the
BB, the low returns of snow result in significant
underestimation. The effect of the sampling volume
can also be appreciated: bright band contamination
extends higher up at further ranges where the beam is
wider. The variability of the error (here quantified
through its standard deviation) tends to increase with
height, though more slowly as we go further in range
due to the smoothing introduced in the observations
by a wider beam.
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Fig. 3. Mean bias (top) and standard deviation (bottom) of the error due to range effects as a function of range and height
of the measurements, when the bright band was between 1.4 and 1.8 km (left) and between 2.6 and 3.0 km (right). The
red line corresponds to the path of the lowest elevation of the McGill S-band radar (0.5°) and the dotted line shows the

mean height of the bright band for the analyzed scans.
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Fig. 4. ACFs corresponding to different CAPPI heights (from
bands between 1.4 and 1.8 km (top) and between 2.6 and 3.0
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Fig. 5. Decorrelation distances of the error due to the range effects for the cases where the bright band is between 1.4 and

1.8 km (left) and between 2.6 and 3.0 km (right).

Furthermore, the same data set was used to
compute the space autocorrelation functions (ACFs)
of the errors introduced by the range effects (figure 4).
It can be seen that the errors are almost uncorrelated
when the radar measures in the liquid precipitation
layer; they become more correlated in the melting
layer (see also the decorrelation distances in figure 5)
and the correlation is significantly higher in the snow
region. On the other hand, the effect of beam
broadening with range seems to have little influence
in the space ACF of the errors due to range effects.

4. THE UNCERTAINTY IN THE Z-R RELATION

The uncertainty introduced by the Z-R
transformation was studied by Lee and Zawadzki
2005 and Lee et al. 2007. In this section we will give

a short review of their modeling methodology and
their results for Montreal, Quebec (Canada).

Radar reflectivity is usually converted into rainfall
rate using a power law such as:

Z =aR’ )

Therefore, the error in rainfall from reflectivity
observations can be expressed (in dB) as:

7 b
SR =10log (—) ~10log(R) 3)
a

Figure 6 shows a Z-R scatter plot derived from
DSD observations of a Precipitation Occurrence
Sensing System (POSS -see a detailed description in



Sheppard 1990-) located in Montreal. The departures
from the climatological model represent the
uncertainty in rainfall estimated from reflectivity. The
time evolution of dr is shown in figure 7 where it can
be seen that the departures from a mean Z_R
relationship exhibit significant structure in time (here,
the decorrelation time is around 20-25 minutes —see
figure 8a-). In particular, Lee et al. 2007 modeled the
structure of dr through its Fourier spectrum as a
power law (as shown in figure 8b).
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Fig. 6. Z-R scatterplot derived from POSS DSDs
measured from 2135 UTC 24 September 2001 to 2335
UTC 25 September. The continuous line shows the
best fitted power-law model for these observations and
the dashed line shows the climatological Z-R

relationship (Z=200R'*’ -Lee and Zawadzki 2005-).
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Fig. 7. Top: Series of rain rate (black dots) and of rain
rate estimated from reflectivity using the climatological
Z-R relationship (orange dots; both rain rate and
reflecitivity obtained from POSS DSD observations).
Bottom: residuals (in dB) between estimated and
observed rain rate.

From a more climatological perspective and using
a data set consisting of 60 days of DSD observations
over 5 years with the same POSS, Lee and Zawadzki
2005 quantified the standard deviation of the error in
radar rainfall estimates using a climatological Z-R

relationship due to the uncertainty in the
transformation, and they found it to be around 41%.

On the other hand, using the same data set, they
found that the average decorrelation time of the
residuals in this area is around 60 minutes. Assuming
the Taylor hypothesis with the main speed of motion
of storms for Montreal, this results in a mean
decorrelation distance of around 40 km.
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Fig. 8. Top: ACF and structure function of the time
series of dg corresponding to the POSS observations of
figures 6 and 7. Bottom: Fourier power spectrum of the
same time series.

5. CORRELATION BETWEEN ERRORS

As mentioned in Section 2, besides evaluating the
contribution of each source of error in the biases,
variances and ACF of the resulting overall uncertainty,
the crossed terms between errors should also be
taken into account in order to fully characterize the
error covariance matrix.

In this Section we will analyze the cross-
correlation between the two analyzed sources of
uncertainty for an individual event.

To do that, we have compared the series of dr
obtained from DSDs measured with a POSS and the
series of the error due to the vertical variation of
reflectivity (i.e. the vertical profile of reflectivity -VPR-
normalized by the reflectivity at a height of 1.1 km;
figure 9d) derived from collocated profiles of
reflectivity from data of the McGill S-band radar (see
figure 9).

Figure 10 shows the cross correlation function of
these two sources of error at different heights. It can
be appreciated that the cross correlation in rain and
snow regions is not significant, but that the correlation
between the two errors increases and reaches the
maximum (over 0.7) at the bright band height.



It is worth noting that this maximum appears for a
time lag of 6 minutes, which, can be partly explained
by the time drops need to fall to ground (considering
that the bright band was around 3.5 km).

More analysis of this result and its possible
implications for improving radar rainfall estimates can
be found elsewhere in these Proceedings (Berenguer
and Zawadzki 2007).
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Fig. 9. (a) Comparison of the rain rate series corresponding to the event between 1600 UTC 27 September 2002 and
0200 UTC 228 September 2002 0200 UTC from POSS observations and estimated from POSS and radar reflectivity. (b)
Series of 6 from POSS observations. (c) Series of reflectivity profiles at POSS locatioOn observed with the McGill S-band
radar.(d) Series of normalized VPRs obtained from radar observations.
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Fig. 10. Cross correlation between the residuals in R
estimates due to the uncertainty in the Z-R
transformation and the error due the range effects as a
function of the height of radar measurements.

6. CONCLUSIONS

In the presented work we proposed a methodology
to characterize the error covariance matrix of radar
rainfall estimates in stratiform conditions with the
purpose of their assimilation into NWP models.

The two main sources of error affecting S-band
measurements (the errors due to range effects and
the uncertainty due to the Z-R transformation) have
been characterized separately from a physical

perspective. A further stratification by storm types is
possible.

In particular, the errors introduced by the range
effects have been studied by simulation and it has
been shown that they are more correlated in space
when measurements are extrapolated from elevated
observations (especially in the snow region, where the
decorrelation distances can be up to 15-20 km).
Thus, for models with grid spacing of ten kilometers
and more the error covariance matrix due to this
source of error can be considered diagonal. For
higher resolution models the non-diagonal terms
become important.

Stronger correlation has been found in the errors
due to the Z-R transformation, which have been
characterized from long-term DSD observations (the
climatological decorrelation distance in Montreal has
been found to be around 40 km).

Furthermore, we have also studied the correlation
between the two sources of error analyzed.
Significant correlation has been found between the
extrapolation error from the melting layer and the
residuals due to the Z-R transformation observed at
ground.
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