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1. INTRODUCTION

The subjective detection of potentially tornadic storms
using hook shape returns in a radar’s display was first
documented by Stout and Huff [1953], and was sug-
gested as an indicator of tornadoes after the Illinois tor-
nado [Fujita, 1958]. However, Forbes [1981] found that
more than half of the tornadoes in his study did not ex-
hibit apparent hook signatures and suggested that hook
echoes may not be a reliable indicator. A unique fea-
ture of a strong azimuthal velocity difference at a con-
stant range, termed tornado vortex signature (TVS), was
first observed by [Burgess et al., 1975; Brown et al.,
1978] using a pulsed Doppler radar. It has been shown
that the probability of detection (POD), and the warning
lead time for tornadoes in the United States were im-
proved after the installation of the national network of
Weather Surveillance Radar-1988 Doppler (WSR-88D)
radars [Polger et al., 1994; Bieringer and Ray, 1996;
Simmons and Sutter, 2005]. The basic idea of the cur-
rent tornado detection algorithm (TDA) is to search for
strong and localized azimuthal shear in the field of mean
radial velocities [e.g., Crum and Alberty, 1993; Mitchell
et al., 1998]. However, because of the smoothing effect
of the radar resolution volume, the shear signature is de-
graded if the size of tornado is small and/or the tornado
is located at far ranges [Brown and Lemon, 1976]. Re-
cently, Brown et al. [2002] demonstrated that shear sig-
nature can be enhanced using half-degree angular sam-
pling despite the expense of increasing statistical errors
in velocity data.

The pioneering work of Zrnić and Doviak [1975] has
shown that tornado spectra can have distinct signa-
tures that set them apart from other weather spectra.
The wide and bimodal tornado spectral signature (TSS)
were subsequently verified by a pulsed Doppler radar
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with a significant maximum unambiguous velocity of ap-
proximately 90 m s g

h
[Zrnić et al., 1977; Zrnić and Is-

tok, 1980; Zrnić et al., 1985]. Recent studies have
shown that wide and flattened spectra are observed
in a tornadic region using simulations and data col-
lected from the research WSR-88D (KOUN) operated
by the National Severe Storms Laboratory (NSSL) [Yu
et al., 2007]. In that study, three complementary feature
parameters that were derived from high-order spectral
analysis and signal statistics were introduced to quantify
TSS. It was suggested that the TSS can still be signifi-
cant enough to facilitate tornado detection at far ranges,
even though the shear signature may become difficult
to identify. Additionally, the eigen-ratio of the correlation
matrix derived from the raw time series data also have a
distinct distribution in the tornadic region due to the wide
and flat features of the spectrum [Yeary et al., 2007].

Although the tornadic signatures described above have
the potential to facilitate tornado detection, each of
these signatures has different characteristics and it is
desirable to integrate them to improve the detection.
A fuzzy logic methodology is ideal to address a com-
plicated system which launches a decision based on
multiple inputs simultaneously. Fuzzy logic based sys-
tems have already been widely applied to weather radar
for hydrometeor classification [e.g., Vivekanandan et al.,
1999; Liu and Chandrasekar, 2000; Zrnić et al., 2001].
In this work, a fuzzy logic system is developed to inte-
grate tornadic signatures in both the spectral and veloc-
ity domains. The system is further enhanced by a feed-
back process provided through a neural network and
is termed the neuro-fuzzy tornado detection algorithm
(NFTDA).

This paper is organized as follows. The overview of TSS
and NFTDA technique is developed in section 2 and is
followed by the simulation results in section 3. The per-
formance of NFTDA is further demonstrated using time
series data collected by the KOUN radar in section 4. Fi-
nally, a summary and conclusions are given in section 5.
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Figure 1: A schematic diagram of NFTDA. A fuzzy logic system is designed to detect a tornado, while a neural
network is incorporated to refine the membership functions through a hybrid self-learning process.

2. NEURO-FUZZY TORNADO DETECTION ALGO-
RITHM (NFTDA)

2.1. An Overview of Tornado Spectral Signatures

TSS with bimodal or white noise like features have been
observed from both real data and analytical simulations
[e.g., Zrnić and Doviak, 1975; Zrnić et al., 1985; Yu
et al., 2007]. It is noted that the Doppler spectrum rep-
resents a distribution of weighted radial velocities within
the radar resolution volume, and the mean Doppler ve-
locity is defined by its statistical average (i.e., the first
moment). It has been hypothesized [Yu et al., 2007] that
the TSS can retain enough information to facilitate tor-
nado detection, while the TVS is smoothed within the
radar resolution volume and becomes difficult to iden-
tify. Three feature parameters were proposed by Yu
et al. [2007] to characterize the TSS. The first param-
eter is spectrum width ( ��� ), the second moment of a
spectrum. Although the spectrum width is an intuitive
parameter to describe the wide signature, it is not suf-
ficient to characterize the shape of a tornadic spectrum
and is susceptible to a number of factors such as inac-
curate estimate of noise level and radar settings [Fang
et al., 2004]. Moreover, large spectrum widths can be
observed in a non-tornadic region where strong shear
and/or low signal to noise ratio (SNR) are present. Two

additional feature parameters, the phase of the radially
integrated bispectrum (PRIB, denoted by

�
) and spec-

trum flatness ��� , were introduced to characterize TSS
[Yu et al., 2007]. Since most shape information of a pat-
tern could be contained in the phase of its Fourier coef-
ficients [Oppenheim and Lim, 1981] and the commonly
used power spectrum (the second order spectrum) is
phase blind. A third order spectrum termed “bispectrum”
was introduced to extract the phase information by con-
sidering the Doppler spectrum in units of decibel (dB) as
a sequence for pattern recognition [Yu et al., 2007]. The
spectrum flatness, defined as the variance of a Doppler
spectrum in dB, can be used to identify a white-noise like
feature, which is often observed if the maximum unam-
biguous velocity is smaller than the maximum rotational
speed of a tornado’s vortex. In the cases considered
[Yu et al., 2007], significantly high

�
and low ��� values

were obtained from spectra in a tornado compared to
spectra from non-tornadic regions. Furthermore, Yeary
et al. [2007] reported that a spectrum of white-noise like
signature can reflect on the distribution of eigen-ratio of
the correlation matrix estimated from the raw time se-
ries data. It is found that the regions of a large eigen-
ratio ( ��� ) are well correlated with wide and flat spectra
in tornadic regions.

In this work, a fuzzy logic system is developed to in-
tegrate tornadic signatures, which includes the velocity
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difference, spectrum width, spectral flatness, PRIB, and
eigen-ratio.

2.2. Architecture of Neuro-Fuzzy Tornado Detec-
tion Algorithm

A fuzzy logic system can be considered as a non-linear
mapping of feature parameters (i.e., inputs) to a binary
output. In NFTDA the output is a binary detection of
the presence of tornado. A typical fuzzy logic system
can consist of three subsystems: fuzzification, rule infer-
ence, and defuzzification [Mendel, 1995]. A schematic
diagram of the NFTDA is depicted in Fig. 1. In fuzzifi-
cation, each feature parameter (or termed crisp input)
is converted to a fuzzy variable with a value between���������

, termed membership degree, by a membership
function for each class. The fuzzy variables are the in-
puts to the subsystem of rule inference with an output
of 	�
 and 	
� for tornadic and non-tornadic cases, re-
spectively, as shown in Fig. 1. The relationship between
the input and output of rule inference is described by
fuzzy rules. The process of evaluating the strength of
each rule is called rule inference. In the NFTDA, the
Mamdani system is selected for the rule inference [Ross,
2005]. In this system the max-product (or correlation-
product) is used to set the rule strength, which is de-
fined as the product of the input fuzzy variables. Finally,
the output of rule inference, which is still a fuzzy vari-
able, is converted to a crisp output of precise quantity
through the subsystem of defuzzification. A maximum
defuzzifer, defined as the largest of 	�
 and 	
� , is im-
plemented in NFTDA and the final, binary detection is
made.

The membership function is one of the most important
components in a fuzzy logic system. It can be ob-
tained from intuition, inference, rank ordering, neural
networks and inductive reasoning, for example [Ross,
2005]. In the NFTDA, the shape of the membership
functions were determined using prior knowledge of the
relationship between the feature parameters and fuzzy
variables for both tornado and non-tornadoes. There-
fore, only an S- or Z-shaped membership function is
employed. Each membership function for a crisp input� is defined by two breaking points ( � h and ��� ). The
curve with the positive slope is known as the “S” curve,
while the curve with the negative slope is known as the
“Z” curve. An S-shape membership of spectrum width
for the tornadic case with the two breaking points is ex-
emplified in the upper left panel of Fig. 2. The breaking
points of each membership function are initialized based
on the results of statistical analysis. Subsequently, the
breaking points are adjusted through a training process

using a neural network as depicted in Fig. 1 [Liu and
Chandrasekar, 2000; Wang et al., 2005].

3. SIMULATION RESULTS

The NFTDA is tested and verified using the Level I time
series data generated from a radar simulator developed
by Yu et al. [2007]. A model Doppler spectrum is sim-
ulated based on the superposition of weighted scat-
terers’ velocities in the radar resolution volume. The
weights are determined by the reflectivity, antenna pat-
tern, and range weighting function. If the radial veloc-
ity of a scatterer exceeds the maximum unambiguous
velocity ( ��� ), it is aliased into the interval of ������������� .
Consequently, the time series data are obtained from
the inverse Fourier transform of the model spectrum
with desirable SNR. A detailed description of the sim-
ulation is provided in Yu et al. [2007]. In this work, a
tornado located at 1 km southwest of a mesocyclone
is simulated. Both a tornado and mesocyclone are
modeled by a Rankine combined vortex model with a
maximum tangential velocity of 50 m s g

h
and 15 m s g

h
,

respectively. The radius of the mesocyclone is 2 km
and three different tornado’s radius ( ��� ) are used in the
simulation. Moreover, uniform reflectivity is applied to
the tornado and a broad Gaussian-shape reflectivity is
used for the mesocyclone. The level I data is simulated
for a WSR-88D radar with one degree beamwidth (  �! )
and 250 m range resolution ( "�# ). A maximum un-
ambiguous velocity of 35 m s g

h
indicates the presence

of velocity aliasing. The mean Doppler velocities and
spectrum widths are estimated by the autocovariance
method [Doviak and Zrnić, 1993]. The spectral flatness,
PRIB, and eigen-ratio are estimated by the methods de-
scribed in Yu et al. [2007] and Yeary et al. [2007].

It has been shown that tornado’s shear and spectral sig-
natures depend on several factors such as the range,
the tornado size, and the location of a tornado in the
radar’s resolution volume [e.g., Zrnić et al., 1977; Brown
et al., 2002; Yu et al., 2007]. In this work, the ratio of
detection, defined as #%$�&('*),+�-.) � , is introduced to
quantify the performance of NFTDA, where ) � is the
total number of tornadic cases generated for the test
and ) + is the number of cases detected. For each re-
alization 121 tornado locations in the radar resolution
volume are simulated with

���0/1���
grids in azimuthal

and range directions at a given range (i.e., )��2' ��34�
).

The radar resolution volume of interest is centered at
azimuth of 0 5 . In order to calculate the velocity dif-
ference, signals from two additional volumes centered
at azimuth angles of -1 5 and 1 5 are simulated at each
range. For each tornado location, the five feature pa-
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Figure 2: Membership functions for tornado and non-tornadic cases: spectrum width (upper left), velocity difference
(upper middle),

�
(upper right), eigen-ratio (lower left), spectral flatness (lower right).
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Figure 3: Statistical analysis of the performance of NFTDA as a function of normalized range for "�# -�� � ' 1.25, 2.5,
and 5.0. The NFTDA results are denoted by thick solid lines. The results from the detection based on a threshold of
velocity difference of 20 m s g

h
(TTD) are also provided for comparison and are denoted by the thin dashed lines.
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rameters (velocity difference, spectrum width, spectral
flatness, PRIB, and eigen-ratio) are obtained as the in-
puts of NFTDA. The ratio of detection represents the
POD for different tornado’s locations within the radar
resolution volume. The ROD as a function of normalized
range is presented in Fig. 3 for three tornado sizes that
are defined by "�# -�� � , where � � ' 50, 100, and 200 m.
The normalized range is defined as � �  ! -�� � , where � �
is the range from the radar to the tornado and  �! is in
radian. Each data point represents the mean of ROD
from 50 realizations, each one with different noise se-
quence in the time series data. Moreover, a tornado
detection solely based on the thresholding of velocity
difference is also implemented and is termed threshold-
ing tornado detection (TTD). The ROD from the TTD
using a threshold of 20 m s g

h
, one of the thresholds

used in the NSSL TDA [Mitchell et al., 1998], is pro-
vided in Fig. 3 for comparison and is denoted by thin
dashed lines. For "�# -���� ' �

�
3��

both NFTDA and TTD
have superior RODs of approximately 100% when the
normalized distance is smaller than 8.7. Beyond that,
NFTDA can still have high RODs even though the shear
signature is diminishing with increasing range. For the
case of " # - � � ' 3

�
�

NFTDA can still have a ROD of
approximately 75% at a range of 80 km while the TTD
has a ROD of 10%. It is evident that NFTDA provides
higher RODs than TTD especially at far ranges for the
three tornado sizes. It is because wide and flat spectra
are still obtained from a tornadic vortex while the shear
signature is degraded significantly. Although the perfor-
mance of the TTD method can be improved by lower-
ing the threshold, the false detections will be increased.
In practice, several factors can limit the performance of
NFTDA such as the degraded quality of the parameters
at far ranges caused by the low SNRs, and the radar
actually samples the storms aloft due to the earth cur-
vature.

4. PERFORMANCE EVALUATIONS

4.1. Description Of The Experiments

The performance of the new NFTDA technique is fur-
ther evaluated from two tornadic events in central Okla-
homa that occurred on the 8 and 10 May 2003. The
tornado outbreaks on 10 May are of primary interest
because continuous time series data were collected by
KOUN for the entire period. The National Climatic Data
Center (NCDC) reported that three tornadoes from the
same supercell thunderstorm broke out in central Okla-
homa from 0329 UTC to 0425 UTC on 10 May 2003
(http://www4.ncdc.noaa.gov/cgi-
win/wwcgi.dll?wwevent storms). The first tornado

started at 0329 UTC and had traveled 18 miles dur-
ing approximately 37 min before dissipating. The max-
imum Fujita scale of this tornado was reported at F3.
The second tornado with a maximum of F1 scale be-
gan at approximately 4 miles south of Luther, Oklahoma
at 0406 UTC and had lasted for approximately 9 min-
utes with 3 miles of track. The last tornado is the fi-
nal segment of the previous tornado and had occurred
between 0415 an 0424 UTC with a maximum scale of
F0. The tornado damage path from the ground survey
is displayed in Fig. 4 as the blue shaded area. In ad-
dition, the damage path of the May 8th tornado is de-
noted by the green shaded area. The NCDC has shown
that this tornado with maximum magnitude of F4 which
had traveled approximately 18 miles from 2210 UTC to
2238 UTC. However, the collection of time series data
by KOUN started at approximately 2232 UTC and only
two volume scans are associated with the tornado.

4.2. Experimental Results

All the feature parameters for NFTDA were calculated
using raw time series data collected by KOUN in Nor-
man, OK. The reflectivity, mean Doppler velocity, and
spectrum width are calculated using the autocovariance
method [Doviak and Zrnić, 1993]. The spectral features
and the eigen-ratio are estimated by the methods de-
scribed in Yu et al. [2007] and Yeary et al. [2007], re-
spectively. NFTDA was subsequently applied to data
from the lowest elevation angle of 0.5 5 and with SNR
is larger than 20 dB. The output of NFTDA is a binary
detection of whether the tornado is present or not. The
NSSL’s TDA is also applied to the KOUN level II data
for the comparisons and the results are defined by TDA-
KOUN. Furthermore, detection results from the opera-
tional TDA of data from WSR-88D located at Twin Lakes,
Oklahoma (KTLX) are included for comparisons and
are defined as TDA-KTLX. The locations of KOUN and
KTLX are also depicted in Fig. 4, where the KOUN lo-
cated at origin point marked with a solid red star and the
KTLX is marked with a solid black star. It is noted that
the May 10th tornadoes were located closer to KTLX
at all times. The time duration of one volume scan for
KOUN and KTLX is 6 and 5 min, respectively. The time
stamp shown in Fig. 4 for the two radars of KOUN and
KTLX is color coded by red and black, respectively. The
comparisons of NFTDA-KOUN and TDA-KOUN are di-
vided into three time periods. In the first period, from
0329 UTC to 0353 UTC, the tornado was detected by
both NSSL’s TDA and NFTDA and the location of both
detections agrees well with the tornado damage path.
One exception is the TDA-KOUN at 0335 UTC, in which
the location of the detection is approximately 1.25 km
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Figure 4: Comparisons of the detection results from TDA and NFTDA with KOUN data, which are denoted by blue
triangles (TDA-KOUN) and red circles (NFTDA-KOUN), respectively for both tornadoes on May 8th and 10th, 2003.
The tornado damage paths are depicted by green and light-blue shaded areas for the May 8th and May 10th cases,
respectively. Moreover, the TDA results from the operational WSR-88D (KTLX) at Twin Lakes, OK are also shown.

from the edge of the damage path. The maximum detec-
tion range during this period is approximately 42.6 km.
In the second period, from 0405 UTC to the demise
of the third tornado at 0417 UTC, the TDA-KOUN has
only one detection approximately 6 km away from the
damage path at 0411 UTC. On the other hand, NFTDA-
KOUN still provides robust and accurate detections that
are consistent with the tornado damage path through-
out the entire period. The maximum detection range of
NFTDA in this period is 55.375 km. According to the
NCDC, tornadoes were reported at F0-F1 scales dur-
ing this period. The third period is for the volume scan
at 0359 UTC and neither algorithms detected any tor-
nado at this time. However, NFTDA identified a tornado
at 19.4 km in zonal direction and 40.9 km in meridional
direction, that is located within the damage path, from
the data at the next elevation angle of 1.45 5 . One hy-
pothesis is that the tornado was at the dissipating stage
and no longer researched the ground. These tornadoes
showed uncontinuous tracks and lasted approximately
56 minutes, which is similar to the multiple cores meso-
cyclone described by Adlerman et al. [1999]. Further-
more, it is shown in Fig. 4 that the TDA from KTLX pro-
vides positive detections throughout the entire period. It
is evident at least one positive detection agrees with the
tornado damage path at any given time, although some

false detections can be observed. The maximum range
of detection for TDA-KTLX in this case is 32.1 km, which
is consistent with the maximum detection of TDA-KOUN.

For the 8 May case, it is evident that NFTDA provides
accurate detections for both times, while TDA-KOUN
provides detections at 2236 UTC that are not consis-
tent with damage path. In summary, it is clear that the
TDA algorithm of both research and operational versions
has suitable performance if a tornado is located at close
range. The TDA-KOUN has limited performance when
the tornado is weak or is located at distant ranges. On
the other hand, the NFTDA is robust and can extend
the tornado detection of NSSL TDA up to approximately
55 km.

5. SUMMARY AND CONCLUSIONS

It has been shown that strong azimuthal shears can
be observed in a tornadic region and are the primary
feature for the operational tornado detection algorithm
of the WSR-88D. However, the shear signature deteri-
orates with range because of the smoothing effect by
the increasing radar resolution volume. Recently, tor-
nado spectral signatures (TSS) were characterized us-
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ing spectrum width, bispectrum analysis, and signal
statistics. Moreover, large eigen-ratios of the raw data
in a range gate were also found to be associated with
signals from the vicinity of a tornado. In this work a
novel algorithm based on fuzzy logic is developed to in-
tegrate spectral, velocity, and eigen-ratio signatures with
the goal of improving tornado detection. A fuzzy logic
system is able to launch a decision based on simultane-
ous multiple inputs with fuzzy descriptions. The system
is further enhanced by a training process of a neural
network. This hybrid approach is termed Neuro-Fuzzy
Tornado Detection Algorithm (NFTDA).

In the paper, the architecture of NFTDA was first pre-
sented and discussed. The feasibility of NFTDA was
tested using numerical simulations for various condi-
tions. The results indicated that the inclusion of tornado
signatures, rather than shear information alone, is ef-
fective in improving tornado detection. Moreover, the
performance of NFTDA was compared with the NSSL’s
TDA for the data collected by the KOUN radar during
two tornadic events on the 8 and 10 May 2003. Tornado
detection from the KTLX radar is also provided as a ref-
erence because it is located closer to the tornadoes than
KOUN. Although only a limited number of cases was
obtained, NFTDA has shown promising results in pro-
viding accurate detections that are consistent with the
tornado damage path and TDA detections from KTLX
with closer range and extending the detection range of
NSSL’s TDA. Furthermore, NFTDA is flexible to include
additional feature parameters such as differential reflec-
tivity and correlation coefficient from a dual-polarization
radar. NFTDA can also be easily adopted by other
radars of different characteristics such as beamwidth
and range resolution without major modifications.
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