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ABSTRACT 
 

 The size of the largest particle in a sample of hailstones or raindrops is of some interest. In the case of hail, 
it provides an indication of the potential for damage. In the case of rain, some scientists take it as an indication of the 
need to truncate any applicable drop-size distribution function. Such samples come from much larger populations of 
hydrometeors, and a simple gedanken experiment shows that the largest particle in a sample is most unlikely to be 
the largest particle in the population. This paper examines the sampling distribution of the maximum particle size, as 
a function of the sample size (number of particles observed). 
 
 This distribution is calculated analytically for exponential size distributions, and numerical results are pro-
vided for gamma and lognormal distributions. The results show that the maximum particle size in a sample is unlikely 
to approach the maximum size in the underlying population, even with a sample of many thousands of particles. Con-
sequently, an observation of “maximum particle size” provides little more than a lower bound on the maximum size in 
the population, and establishes no basis for truncating any applicable size distribution function. 
 
 
1. INTRODUCTION 
 
 The size of the largest raindrop, or the largest hail-
stone, in a population of precipitation particles is of in-
terest. Mathematical functions used to describe the 
population size distribution could, and perhaps should, 
be truncated at the largest size (e.g., Ulbrich 1983, 
1985; Ulbrich and Atlas 1998). In the case of hailstones, 
the maximum size can be a useful indicator of damage 
potential (e.g., Morgan 1982) and also provides clues 
regarding the hailstone growth process. However, the 
largest particle found in a sample taken from the popula-
tion is not a reliable indicator of the size of the largest 
one in the underlying population – an issue treated us-
ing empirical data for hailstones in Smith and Waldvogel 
(1989) and using Monte Carlo simulations in Smith et al. 
(1993) and Smith and Kliche (2005). 
 
 A simple gedanken experiment shows that the larg-
est precipitation particle in a sample is unlikely to repre-
sent the size of the largest one in the population being 
sampled. Suppose two size-measuring instruments, 
such as raindrop disdrometers or hailpads, were placed 
near enough, say a couple of meters apart, that they 
could be considered to provide independent samples 
from the same population. Large hydrometeors are 
sparsely distributed, so rarely if ever would the largest 
particles in concurrent samples from the two instru-
ments have the same size (assuming the instrument 
size resolution provides adequate discrimination). Con-
sequently, there would be at most a 50% chance that 
the largest particle in one of the samples represents the 
largest size in the population. Now add a third sensor, 
and so on; the probability that any one sample contains 
the largest particle would be inversely proportional to 
the number of instruments, and would become vanish-

ingly small as that number grows. 
 
 Knowledge of the relationship between the largest 
size in a sample and the largest size in the underlying 
population would be of interest. Only the inverse of this 
relationship is readily obtainable, in the form of the 
probability distribution of the maximum particle size ex-
pected in a sample of any specified size taken from a 
specified population. If the probability density function 
(PDF) of particle sizes in the underlying population is 
known, the PDF of maximum size in a sample from the 
population can be calculated for any given sample size 
(e.g., Rice 1995). For the size distribution functions 
commonly used to represent precipitation particles (ex-
ponential, gamma, lognormal), this distribution can be 
readily calculated. Such calculations, summarized 
herein, illustrate the implications of the foregoing ge-
danken experiment. 
 
2. GENERAL TREATMENT 
 
 Consider a population of spherical precipitation 
particles in the atmosphere described by some particle 
size distribution function (PSD) n(D), where D repre-
sents the particle diameter. We write the PSD as a 
product of the total number concentration NT and the 
probability density function of particle size p(D); thus 
 
 )()( DpNDn T=  (1) 
 
For present purposes we allow the PDF to extend to 
infinite diameter, clearly an unrealistic assumption. 
Truncation at some physically plausible maximum di-
ameter would add a minor complication to the calcula-
tions. However, as will be shown below, such truncation 
is often irrelevant for typical sample sizes. 
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 The probability that any given particle in the popula-
tion is smaller than some specified threshold size t is 
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For a sample of C particles taken at random from the 
population, the probability that the largest particle Dmax 
is no larger than t is 
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From this expression we can calculate the PDF of Dmax 
as 
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For exponential PSDs the results are available in closed 
form, while for gamma or lognormal PSDs numerical 
techniques must be used. 
 
 
3. RESULTS 
 
a.  Exponential Particle Size Distributions 
 
 For an exponential PSD, 
 
 ( ) ( DNDnDn T ΛΛΛ −=−= expexp)( 0  (5) 
 
where no and Λ are concentration (“intercept”) and size 
(“slope”) parameters, respectively. Thus 
 
 ( ) ( )DDp ΛΛ −= exp  (6) 
 
It is convenient to convert to a dimensionless particle 
size scale y by normalizing the diameters with respect to 
the mass-weighted mean diameter Dm: y = D/Dm. For an 
exponential PSD, Dm = 4/Λ, so the PDF can be written  
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Let tN represent the normalized threshold t/Dm, and ymax 
= Dmax/Dm; then 
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and in a sample of C particles from the exponential 
population, 
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The PDF of ymax then becomes 
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 Figure 1 shows this PDF for three different sample 
sizes. The shape of the PDF varies only slightly for such 
large sample sizes, and the mode shifts to the right by 
(ln10)/4 for each factor 10 increase in sample size. (This 
shift can be seen in Fig. 3 of Smith and Waldvogel 
1989.)  While the PDF of particle size in (6) is not trun-
cated at a maximum size, it is evident from Fig. 1 that 
even in a sample of 10,000 particles the probability of 
finding one as large as D = 3 Dm is small. For example, 
with a raindrop population having Dm = 2 mm this means 
that a drop as large as 6 mm is unlikely to appear in 
such a sample. That is a plausible raindrop size, so 
such a sample would provide no basis for truncating the 
PSD at Dmax. 
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Fig. 1: Probability density functions for the (normalized) 
maximum particle size in samples from an exponential 
size distribution, for sample sizes as indicated on the 
curves. 

 To be sure, if the sample size exceeded 100,000 
raindrops the mode of the PDF would approach Dmax/Dm 
= 3.0 and the chance of finding a larger drop would be-
come appreciable. But such large samples could only 
be obtained by commingling data from different times 
and/or places, raising issues about homogeneity of the 
samples. 
 
 It is also true that sample values of raindrop Dm can 
be larger, perhaps up to 3 mm; in such a case ymax = 3.0 
means Dmax = 9 mm, an implausibly large size for a 
raindrop. However, such occurrences are not common; 
moreover, considering the uncertainties in the sample 
estimates of Dm (Smith et al. 1993; Smith and Kliche 
2005) the largest values are likely to be overestimates. 
 



 Figure 2 presents the results in a different form, 
showing the probability that the largest value of y = 
D/Dm in a sample is no greater than that indicated by the 
values on the curves, as a function of sample size. For 
instance, in samples of 2000 particles the median value 
of Dmax (indicated by the 0.5 probability point on the or-
dinate) is about 2.0 Dm. Even in samples of 100,000 
particles, the median Dmax is still less than 3.0 Dm. 

 
b.  Gamma Particle Size Distributions 
 
 For a gamma PSD the PDF of particle size, equiva-
lent to (6), is 
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where λ is the scale (size) parameter,  μ is the distribu-
tion shape parameter, and Γ(x) denotes the gamma 
function. Here Dm = (μ + 4)/λ; thus 
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Converting to normalized diameters, 
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The cumulants called for in (2) – (4) are incomplete 
gamma functions that cannot be expressed in closed 
form, requiring numerical computations. If Pg represents 
the cumulant corresponding to (2), then 
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and 
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 Figure 3 shows the PDF of Dmax for the case of 
shape parameter μ = 2, and three different sample 
sizes. Here the PDF narrows, and the tendency of the 
mode to shift to the right diminishes, as the sample size 
increases. There would be very little chance of finding a 
particle approaching D = 3.0 Dm in samples of plausible 
sizes from this PSD. Gamma size distributions with 
higher values of the shape parameter are even nar-
rower, reducing the probability of finding a particle that 
large even further. 

 
 Figure 4 again presents the information in a format 
comparable to Fig. 2. The curves for y = 2.5 in Figs. 2 
and 4 are nearly identical, but the probability that the 
largest particle is smaller than 3.0 Dm in the gamma 
distribution of Fig. 4 is even greater than is the case for 
the exponential PSD of Fig. 2. The exponential PSD is a 
limiting case of the gamma family, with shape parameter 
μ = 0, and is the one with the heaviest tail. 

Fig. 2: Probability that the (normalized) size of the 
largest particle in a sample of the size indicated 
on the abscissa, taken from an exponential distri-
bution, is no greater than the value of y indicated 
on the respective curves. 
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Fig. 3: Probability density functions for the (normal-
ized) maximum particle size in samples from a 
gamma size distribution with shape parameter μ = 2, 
for sample sizes as indicated on the curves. 



c.  Lognormal Particle Size Distributions 
 
 For a lognormal PSD the PDF of particle size, 
equivalent to (6), is (Feingold and Levin 1986) 
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where σln  is the distribution shape parameter and Dg 
is the scale (size) parameter.  
 
In terms of normalized diameters (17) becomes 
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where yg is a normalized scale parameter yg = Dg/Dm. 
For a lognormal PSD, the definition of Dm as the ratio of 
the fourth to the third moment of the PSD yields Dm = 
Dg exp [7 (lnσ)2/2]; therefore 
 
 yg = exp [-7(lnσ)2/2] (19) 

 
The cumulant for this PDF is 
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The cumulants called for in (2) – (4) now involve “error 
functions” erf(x) that also cannot be expressed in closed 
form, again requiring numerical computations.  
 

 Once again the equivalent of (15) can be used to 
calculate the probability that no particle in a sample of 
specified size exceeds the threshold size t, as in (3); the 
derivative of that result would yield the PDF of Dmax. In 
this case, however, the latter calculations are substan-
tially more complicated. Thus here we only use (20) with 
(3) to calculate the values for Fig. 5, which corresponds 
to the preceding Figs. 2 and 4. Comparison of Fig. 5 
with Fig. 2 shows that the probability that the largest 
particle could exceed 3.0 Dm in the specified lognormal 
distribution is greater than is the case for the exponen-
tial PSD, with comparable sample sizes. The wider log-
normal distributions have heavy tails, and in that case 
truncation of the PDF of particle size may be essential. 
Nevertheless, the curves of Fig. 5 demonstrate that the 
size of the largest particle in a sample is generally a 
poor indicator of the appropriate truncation point. 
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Fig. 4: Probability that the (normalized) size of the 
largest particle in a sample of the size indicated 
on the abscissa, taken from a gamma distribution 
with μ = 2, is no greater than the value of y indi-
cated on the respective curves. 

 

 
4. CONCLUSIONS 
 
 The maximum particle size in a sample of raindrops 
or hailstones is unlikely to approach the maximum size 
in the underlying population, even with a sample of 
many thousands of particles. For example, in a sample 
of 5,000 drops from an exponential distribution with 
mass-weighted mean diameter 2 mm (Do = 1.84 mm) 
there would be only a 20% chance of finding a drop as 
large as 5 mm, even if the distribution extends to infinite 
size. Consequently, an observation of “maximum parti-
cle size” provides little more than a lower bound on the 
maximum size in the population.  It clearly establishes 
no basis for truncating any applicable size distribution 
function. 
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