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1. INTRODUCTION 

Dual polarization radar measurements are 
capable of detecting shape, orientation and phase 
state of hydrometeors. Bringi et al (1984) have 
shown that by combining reflectivity and 
differential reflectivity measurements one can 
discriminate between hail and rain in convective 
storms. Furthermore it was demonstrated by Hall 
et al. (1984) that these observations can be used 
for the detection of the melting layer. The use of a 
combination of co-polar correlation coefficient, 
differential reflectivity, specific differential phase, 
and backscatter differential phase for identification 
of mixed phase precipitation in severe hailstorms 
was demonstrated by Zrnic et al. (1993). These 
studies have demonstrated that dual-polarization 
measurements provide a powerful tool for the 
hydrometeor classification. 

In relatively recent studies (Liu and 
Chandrasekar, (2000); Straka et al. (2000); Lim et 
al (2005)) it was demonstrated that the fuzzy logic 
approach is well suited for the task of 
hydrometeor classification. This methodology, 
however, is restricted to selection of one 
dominating precipitation type for a given radar 
volume. This limits our understanding of whether 
phenomena especially in cases of mixed phase 
and ice precipitation, where particle of different 
types can be present within the observation 
volume. 

Spectral decompositions of dual-polarization radar 
measurements (Unal and Moisseev, 2004) taken 
at a high elevation angle allows for combining 
hydrometeor fall velocity and shape information. 
The spectral decomposition of differential 
reflectivity is determined as ratio of hh and vv 
power spectra, and provides an observation of 
differential reflectivity for each Doppler spectral 
line. The spectral decompositions of co-polar 
correlation coefficient and differential phase are 
determined by the co-polar coherency spectrum. 
Since fall velocities and shapes of different ice 

particle types, such as graupel, aggregates and 
ice crystals are different, one could discriminate 
between them by using dual-polarization spectral 
observations. 

Moisseev et al. (2007) have demonstrated that 
this approach is beneficial for precipitation studies 
and allows for DSD retrievals. Moisseev et al 
(2004) and Spek (2005) have extended 
application of those measurements to the case of 
ice precipitation. It was demonstrated that dual 
polarization spectral observations are sensitive to 
different ice particle types. Therefore, by applying 
such measurements to ice precipitation studies 
one could be able to use differential reflectivity, 
co-polar correlation coefficient and differential 
phase to improve hydrometeor classification in 
case of mixed type precipitation. 

In this paper we present a new methodology that 
extends the particle classification scheme of Lim 
et al. (2005) to the case of spectral observations. 
Based on CSU-CHILL observations, of the snow 
storm that took place on December 20th, 2006, it 
is demonstrated that the new classification 
approach can be used for a more detailed study 
of ice precipitation. 

2. DUAL POLARIZATION SPECTRAL 
OBSERVATIONS 

2.1 Co-polar coherency spectrum 

The co-polar coherency spectrum is defined as: 
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where  is the co-polar cross spectrum and 

 are hh and vv power spectra 
respectively. The co-polar coherency physical 
meaning is similar to the co-polar correlation 
coefficient and can be defined as a spectral 
decomposition of the co-polar correlation 
coefficient. 
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The co-polar coherency is an efficient tool to 
discriminate between noise and signal. In this 



study we use it to define parts of the spectrum 
that are dominated by noise. 

2.2 Spectral decomposition of differential phase 

The spectral decomposition of the differential 
phase is defined as the argument of the co-polar 
cross spectrum, . For the precipitation 
signal, at low elevation angles, it is expected that 
the spectral differential phase would be constant 
independent of Doppler frequencies. The clutter 
spectral differential phase on the other hand was 
observed to vary with Doppler frequency and 
range. 
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2.3 Spectral decomposition of differential 
reflectivity 

The spectral decomposition of the differential 
reflectivity is defined as the ratio of hh and vv 
power spectra, . Similar to the 
differential phase the precipitation signal is 
characterized by the constant spectral differential 
reflectivity over all Doppler frequencies. The 
clutter spectral differential reflectivity, however, 
varies with the Doppler frequency and range. 
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3. CLASSIFICATION METHODOLOGY 

The new hydrometeor classification scheme uses 
seven input parameters. Three of those 
parameters are bulk reflectivity, specific 
differential phase and linear depolarization ratio. 
The spectral dual polarization observations are 
represented by spectral decomposition of 
differential reflectivity, differential phase and co-
polar correlation coefficient. The spectral 
decomposition of differential phase is used for 
detection of backscatter differential phase. 
Because in the absence of the backscatter 
differential phase the spectral differential phase 
should be the same for all frequency bins 
corresponding to the signal. The coherency 
spectrum, or spectral co-polar correlation 
coefficient, is used for discrimination between 
signal and noise spectral parts. The spectral 
differential reflectivity is sensitive to the shapes of 
the particles and used to discriminate between 
particle classes. 

Following approach of Lim et al (2005) we use the 
product rule strength mechanism for reflectivity 
and height parameters. Furthermore, we have 
applied the same rule for the spectral 
decomposition of co-polar correlation coefficient, 
since it plays a strong role in discriminating 
between noise and signal. 

As a result of the classification we determine a 
hydrometeor class for each spectral line. In total 
we define five classes: 

1. Aggregates 

2. Crystals 

3. Vertically oriented crystals 

4. Graupel 

5. Other 

The last class mainly corresponds to the noise. In 
Fig. 1 the architecture of the classification scheme 
is shown. 

4. DEMONSTRATION ON CSU-CHILL DATA 

A new hydrometeor classification scheme was 
developed based on spectral decompositions of 
polairmetric observables. This classification 
scheme was applied to the measurements taken 
during snowstorm that took place in Colorado on 
Dec 20, 2006. In Fig. 2 an RHI measurement 
shows an overview of this storm event. To test 
this classification scheme time-series data was 
collected at elevation angles 10, 30 and 50 
degrees. In the right panel of Fig. 2 one can see 
Doppler power spectra and the spectral 
decompositions of differential reflectivity for 
different range gates as measured at 50 degree 
elevation angle. One can see that right side of 
spectral differential reflectivity contains larger 
values that are due to scattering from ice crystals 
that have lower fall velocity. In Fig. 3 a 
comparison of outcome of Lim et al (2005) and 
the new classification scheme is shown. One can 
see that overall there is a rather good agreement, 
except that the new classification scheme is able 
to detect ice crystals and aggregates 
simultaneously present in observation volumes 
between heights 2.5 to 4.5 km.  

Based on this study we can conclude that spectral 
decompositions of dual-polarization 
measurements can be used to improve our 
understanding of mixed hydrometeor type 
precipitation, such ice precipitation. 
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Fig. 1 Architecture of the hydrometeor classification scheme.
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Fig. 2 CSU-CHILL snowstorm observations carried out 
on Dec. 20, 2006. The top figure shows a RHI 
measurement. The right figure shows spectrographs of 
reflectivity and diff. reflectivity measured at 50 degrees 
elevation angle.  

 
 
 
 

Fig. 3 Comparison between the classification schemes. The right figure shows output of (Lim et 
al 2005) fuzzy logic classifier. The left figure shows fuzzy logic classifier based on spectral 
decomposition of polarimetric variables. 
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