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1. INTRODUCTION 
 
        Lilly (1969) was the most notable advocate of 
subsidence warming in the core of tornadoes as an 
explanation for how tornadoes achieve such high wind 
speeds.  Laboratory experiments (e.g., Church et al. 
1979), numerical simulations (e.g. Walko 1988; Fiedler 
1994), and observational studies (e.g., Wurman and Gill 
2000) have shown that negative vertical velocities do 
occur in the cores of tornadoes; further, sometimes 
these downdrafts are quite vigorous.  However, the 
central pressure deficit and maximum wind speed in 
observed and numerically simulated tornadoes 
frequently exceed the limits set by thermodynamic 
arguments.  Simulations of axisymmetric vortices by 
Fiedler (1994, herein F94) show a core pressure deficit 
exceeding 30 times the CAPE-derived hydrostatic 
pressure drop, and an observational study by Samaras 
(2004) measured a 100-hPa pressure drop in the core 
of a violent F-4 tornado in South Dakota.  Fiedler (1998, 
herein F98) and F94 have shown wind speeds up to five 
times the thermodynamic speed limit in simulated 
axisymmetric tornado-like vortices. 
        Despite numerous studies showing downdrafts in 
the cores of tornadoes, surprisingly few studies 
investigate the possible effects of subsidence warming 
on the maximum wind speeds and minimum central 
pressure.  Walko (1988) and F94 looked into the 
plausibility of subsidence warming and agreed that most 
likely it occurs, yet these studies are inconclusive on the 
magnitude of the effect.  In this simple project, the 
investigation of subsidence warming done in F94 will be 
revisited, but using a more natural configuration.  A 
numerical model will be used to isolate the effects of 
subsidence warming and to conclusively quantify the 
significance of the warming on wind speeds and the 
vortex core pressure deficit in axisymmetric tornado-like 
vortices. 
 
2. THE MODEL 
 
         As in Fiedler (1994), the numerical model utilized 
in this study is a primitive equation formulation of 
incompressible fluid motion within a cylindrical domain.   
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The cylindrical domain is expanded from F94, now with 
a rigid lid at z = 2 and a domain radius of r = 4.  The 
entire domain rotates with angular velocity Ω.  The 
dimensionless governing equations (in cylindrical 
coordinates): 
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where u, v, and w represent the radial, tangential, and 
vertical components of the wind; 2Ω is the Coriolis 
parameter, υ is the dimensionless viscosity (and 
diffusivity), and p is the pressure divided by a constant 
density.  F94 used a viscosity that increases with height.  
The present version uses a viscosity that is constant 
throughout the domain, which helps to alleviate 
numerical instabilities and the computational expense of 
increased resolution necessary for smaller viscosity 
values.  Three values of υ are used: 0.0002, 0.0005, and 
0.0010.  The diffusion scheme, advection and derivative 
differencing are as in F94. 
        The velocity scale has been normalized using the 
thermodynamic speed limit and the length scale by the 
depth of the domain.  Recall that the thermodynamic 
speed limit is the theoretical maximum vertical speed 
attained by a parcel in an environment with a fixed 
convective available potential energy (CAPE), obtained 
by integrating the approximated vertical equation of 
motion (i.e., only considering the buoyancy term): 

CAPEw ⋅= 2  (6) 



 
A buoyant fluid is initially placed above z = 1, analogous 
to a stratosphere.  In this model, the total buoyancy is  
 

t)zrβs+zrbt ,,(),()(α , (7) 
 
while in F94 and F98 it is simply b(r, z), where b(r, z) is 
a buoyancy fixed in space, centered at z = 0.5.  Here, 
the time-dependent factor α(t) multiplies b(r, z), where 
α(t) ramps up from 0 at t = 0 to 1 at t = 20, thereafter 
remaining constant at 1.  The fixed buoyancy b(r, z) is 
given by 
 

 ( )( )22 5.02010exp264.1),( −−−= zrzrb  (8) 

 
such that integrating along the central axis results in the 
CAPE: 
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As explained in F94 and F98, b is chosen such that (if 
acting alone) it could accelerate a parcel initially at rest 
at z = 0 to w = 1 at z = 1.  Alternatively, b could support 
a hydrostatic pressure of p = -0.5 at z = 0.  This would 
result in a maximum tangential wind speed v = 1 (the 
“thermodynamic speed limit”) in cyclostrophic balance in 
an ideal potential vortex with a non-rotating core. 
        The additional buoyancy term new to this study is 
proportional to the scalar field s(r, z, t), which is 
advected and diffused with the same diffusivity used for 
momentum.  Below z = 1, s is initialized to be zero.  
Above z = 1, s is initialized as 1, except for a smooth 
transition zone centered on z = 1: 
 

( )[ 1)1(exp1)0,,( −−+== κztzrs ] , (10) 

 
where κ determines the sharpness of the transition 
zone.  For all experiments in this study, κ = 30, which 
produces a moderate gradient of s in the transition 
zone.   
        The multiplicative factor β acting on s is essentially 
an inverse Froude number, or a measure of the 
buoyancy provided by s to the fixed buoyancy b, which 
drives the convection.  The experiments done in this 
study vary β from 0 to 1, in increments of 0.2.  For β = 0, 
the advective buoyancy s is analogous to a passive 
tracer.  For β = 1, the “stratosphere” is quite warm.  The 
total buoyancy field after the ramp up of α is shown in 
Figure 1. 
 

 
Fig. 1: Total buoyancy b(r, z) + βs(r, z, 0) with β = 0.4.  
The fixed buoyancy b(r, z) provides the elliptical 
contours centered on the axis at z = 0.5.  The advective 
buoyancy s(r,z,0) is providing the upper layer of 
buoyancy.  This is not the initial distribution of total 
buoyancy, but rather the total buoyancy that would be 
apparent after t = 20, once α = 1 and if s remains 
undisturbed (in reality s is disturbed by t = 20, so this is 
an idealized schematic of the two buoyancy sources in 
the model). 
 
        We can quantify the contribution of s to the 
hydrostatic pressure drop inside the vortex: 
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This is the hydrostatic pressure drop supported by s on 
the central axis minus the hydrostatic pressure drop 
supported by s between r = 0.5 and r = 1.  This pressure 
difference is what could augment the pressure gradient 
available for cyclostrophic balance. 
        In order to isolate the effects of subsidence 
warming from transient phenomena like suction vortices, 
the lower boundary is set to free-slip for all experiments.  
This prevents suction vortices and the vigorous vortex 
breakdown phenomena that commonly cause wind 
speeds to exceed 2, as in F94 and F98. 
        All experiments were run using a 91 x 91 
stretched-grid domain except for those with the smallest 
value for viscosity; these were run on a 181 x 181 
stretched-grid to alleviate instabilities.  The grid points 
are stretched so that the highest resolution is at low-
levels along the central axis (where the low-level wind 
speeds and pressure deficit of the tornado are of 
interest). 
        Table 1 below summarizes the parameters used 
for the 90 experiments.  For each of the fifteen 
experiment numbers shown in the table, the inverse 
Froude number β is varied using the six values (0.0, 0.2, 
0.4, 0.6, 0.8, 1.0). 
 
 
 
 
 



Experiment 
Number 

Viscosity 
(υ) 

Coriolis 
(2Ω) 

Exp1 0.0002 0.07 
Exp2 0.0002 0.14 
Exp3 0.0002 0.20 
Exp4 0.0002 0.27 
Exp5 0.0002 0.35 
Exp6 0.0005 0.07 
Exp7 0.0005 0.14 
Exp8 0.0005 0.20 
Exp9 0.0005 0.27 

Exp10 0.0005 0.35 
Exp11 0.0010 0.07 
Exp12 0.0010 0.14 
Exp13 0.0010 0.20 
Exp14 0.0010 0.27 
Exp15 0.0010 0.35 

Table 1: Convention of Experiment numbers with 
indicated values of viscosity and ambient angular 
velocity.  This convention is used for each value of β.   
 
3. RESULTS 
 
        An example simulation is presented here with 2Ω = 
0.2, υ = 0.0002, and β = 0.4.  Figure 2 shows a time-
series of the extrema of v, p, and ps, and Figure 3 
shows some fields midway through the simulation, at a 
time when subsidence warming in the core is providing 
41% of the pressure drop at the surface. 

 
Fig. 2: Time history of the maximum in v and the 
minimum of p in the lower half of the domain.  The 
contribution of s to the low pressure on the axis (ps) can 
be thought of as a measure of subsidence warming. 
 
        The results of all ninety experiments are shown in 
Figure 4.  Note that the averaging is over the window 
from 30 < t < 100.  This is to filter out the instabilities 
associated with the initial spin-up of the vortex that 
occurs from 0 < t < 30.  In other words, only the quasi-
steady state fields are averaged. 

 
Fig. 3: Five panels showing the following variables at t = 
45 in experiment when subsidence warming is 
contributing to about 41% of the pressure deficit,  from 
left to right: the advective buoyancy s, radial velocity 
component u, tangential velocity component v, vertical 
velocity component w, and pressure perturbation p.  At 
this time, the hydrostatic effect of βs is providing -0.35 of 
the -0.85 pressure difference at the surface between r = 
0 and r = 1. 
 
4. ANALYSIS AND DISCUSSION 
 
        Analyzing Figure 4, it is evident that the low 
viscosity experiments generally have significantly larger 
subsidence warming contributions to the core pressure 
deficit than the other experiments.  The pattern 
becomes more pronounced with increasing β.  It is 
possible that the increased viscosity causes increased 
“drag” that inhibits the vortex from ingesting as much of 
the highly-buoyant air.  Quantitatively, the largest | ps | 
ranges between about 0.35 and 0.41 for low viscosity 
experiments, 0.20 – 0.25 for medium viscosity, and 0.09 
– 0.13 for the high viscosity experiments.  The variations 
in Coriolis parameter provide a much smaller overall 
effect on the efficiency of subsidence warming. 
        The total pressure deficit does not appear to 
change significantly for β > 0.  Taking the difference 
between the magnitude of the non-zero β pressure 
deficit and the control run β = 0 for each group of 
simulations,  
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a statistical analysis can be performed.  Using small-
sample matched-pair confidence intervals at the 99% 
confidence level, a significant result would be a 
confidence interval that does not include zero.  In other 
words, if the difference between pressure deficits with 
subsidence warming and the control runs is statistically 
insignificant, the confidence interval (which with 99% 
confidence contains the true difference Δ) will include 
zero.  Table 2 below contains the results from the 
statistical analysis. 
 

 
Fig. 4: Results from the ninety experiments: the gray 
bars are the average of the minimum of p for 30 < t < 
100 from traces such as that shown in Fig. 2, plotted as 
the absolute value.  The dark gray is the contribution of 
ps.  Error bars show the standard deviation over the 
model run.  Each group of six experiments shows 
results for β equal to 0, 0.2, 0.4, 0.6, 0.8, and 1, from left 
to right.  Experiments are separated by viscosity υ and 
Coriolis parameter 2Ω. 
 
        It is clear that using a 99% confidence interval, 
none of the samples show a statistically significant 
positive or negative difference.  Next, the same 
statistical analysis is done for constant experiment 
number (from Table 1).  The resulting 99% confidence 
intervals are shown in Table 3. 
 

β 99% Confidence Interval for Δ 
0.2 [-0.0337, 0.0582] 
0.4 [-0.0319, 0.0728] 
0.6 [-0.0314, 0.0934] 
0.8 [-0.0151, 0.1115] 
1 [-0.0037, 0.1109] 

 
Table 2: 99% small-sample matched-pairs confidence 
intervals for constant β samples of the difference in 
magnitude of the pressure deficit between subsidence 
warming contributions and control run (no subsidence 
warming), defined as Δ. 
 
 

Exp 99% Confidence Interval for Δ 
1 [-0.1273, 0.1165] 

2 [-0.0195, 0.1846] 

3 [-0.1631, 0.0071] 

4 [-0.2040, -0.0490] 

5 [-0.0252, 0.2067] 

6 [-0.0323, 0.1003] 

7 [0.0314, 0.1772] 

8 [-0.0120, 0.1967] 

9 [0.0143, 0.1363] 

10 [0.0040, 0.1275] 

11 [-0.0742, -0.0084] 

12 [0.0332, 0.0598] 

13 [0.0210, 0.0582] 

14 [0.0097, 0.0749] 

15 [0.0485, 0.0996] 
Table 3: As in Table 2, except for constant experiment 
number. 
 
This time, several experiments (7, 9, 10, 12 – 15) show 
a statistically significant non-zero difference in 
magnitude of the pressure deficit between the β > 0 
cases and the control run.  To quantify how significant 
subsidence the contribution could be, consider 
Experiment 7.  Assuming the most optimal conditions for 
subsidence warming, we will take the upper bound of 
the confidence interval to represent the maximum 
possible Δ, which is 0.1772.  This corresponds to 
approximately a 71% increase in the magnitude of the 
core pressure deficit compared to the CAPE-derived 
hydrostatic pressure drop.  However, since the pressure 
deficit in the core of the control simulation for Exp7 
already exceeds the CAPE-derived hydrostatic pressure 
drop (see Fig. 4), the resulting contribution from 
subsidence warming corresponds to only a 28.1% 
decrease in the core pressure, slightly lower than 
estimates given by F94 and Walko (1988). 
 



5. CONCLUSIONS 
 
        It is clear from this study and its predecessors 
(Walko 1988; F94) that subsidence warming does have 
a small effect on the pressure deficit in the core of a 
numerically-simulated tornado-like vortex.  Under the 
most optimal conditions (which are unlikely to be 
satisfied in the real atmosphere), the magnitude of the 
pressure deficit increases by only about 30%.  Because 
of the pressure deficit dependence on viscosity seen in 
these experiments, it is possible that lower viscosity 
experiments may show a greater effect; because the 
actual atmospheric viscosity is several orders of 
magnitude lower than the viscosity used in this study, it 
is possible that a larger subsidence warming-induced 
pressure deficit could occur in nature.  However, it is 
unlikely that the effect would be significantly larger in 
nature, as the pressure deficits and maximum wind 
speeds in these simulations (and those of F94, F98) are 
comparable to those attained in real tornadoes. 
        Subsidence warming by itself does not have a 
significant impact on increasing the maximum wind 
speeds in tornado-like vortices.  In fact, some of the 
wind speeds actually decreased as β was increased 
(not shown).  Thus, subsidence warming as the 
explanation for the wind speeds in tornadoes exceeding 
the thermodynamic speed limit is not valid.  In 
agreement with previous studies, we have found that 
subsidence warming in the core of the vortex appears to 
play an insignificant role in the evolution of tornado-like 
vortices, unlike in hurricanes.  Instead, the explanation 
presented in Fiedler and Rotunno (1986) offers a purely 
dynamical explanation for the origin of supercritical wind 
speeds in tornadoes. 
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