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1. INTRODUCTION 
 
The numerical prediction of convective precipitation 
depends, to a great deal, on the physics of a forecast 
model. Additionally, initial conditions play a role in 
where convection will develop.  Given the uncertainty 
inherent in prediction of precipitation, an ensemble 
approach is warranted. 
 
Many regional ensemble forecast systems have been 
developed (Tracton et al., 1998, Jones et al., 2007; 
Eckel and Mass, 2005; Liu et al., 2007, Xue et al., 
2007, Arnott et al., 2007).  The focus of our work is 
the use of an ensemble of convection resolving 
models to predict precipitation at a 4km resolution.   
 
Mesoscale processes are, in part, influenced by 
synoptic circulations and by the physical processes 
such as air/surface fluxes, micro-physical processes 
within clouds, and boundary layer mixing. To 
accommodate the broad factors that control 
mesoscale weather forecasts, we constructed a 16-
member ensemble of Weather Research and 
Forecasting (WRF, Michalakes et al, 1998) model 
simulations was used for QPF for the Carolinas during 
the spring (May and June) of 2007. Ensemble 
members were split by: initialization time (00Z or 
06Z), to account for uncertainty in the synoptic 
conditions, by PBL scheme (YSU or MYJ) to account 
for uncertainties in boundary layer moisture, by soil 
physics (Noah or MM5) to account for uncertainty in 
the air/surface exchanges of heat and moisture, and 
by moist physics (Lin or WSM) to account for 
uncertainty in precipitation processes. 
 
2. ENSEMBLE CONSTRUCTION 
 
The focus of the experiment was the prediction of 
precipitation at 4km resolution in an area centered 
over the Carolinas.  Our ensemble consisted of 16 
forecasts from the WRF model.  We constructed a 16-
member ensemble, each member having an outer 
(12-km) and inner (4-km) nest.  We evaluated 
forecasts only on the inner domain.  See Figure 1 for 
the area covered by our inner domain. 
 
The 16 ensemble members were produced by having 
each member uses one of 2 options for four different 
parameters: initialization time, PBL scheme, moist 
physics, and soil physics.  Table 1 shows the 16 
different combinations used for each of the ensemble 
members. 
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FIGURE 1 

 
 
Figure 1.  The inner domain for the WRF ensemble.  The 
resolution of this domain is 4km. 
 
TABLE 1 

 INITIAL 
TIME 

PBL 
SCHEME 

MOIST 
PHYSICS 

SOIL 
SCHEME 

1 00Z YSU LIN NOAH 
2 00Z MYJ LIN NOAH 

3 00Z YSU WSM NOAH 
4 00Z MYJ WSM NOAH 

5 00Z YSU LIN MM5 
6 00Z MYJ LIN MM5 
7 00Z YSU WSM MM5 
8 00Z MYJ WSM MM5 
9 06Z YSU LIN NOAH 
10 06Z MYJ LIN NOAH 
11 06Z YSU WSM NOAH 
12 06Z MYJ WSM NOAH 
13 06Z YSU LIN MM5 
14 06Z MYJ LIN MM5 
15 06Z YSU WSM MM5 
16 06Z MYJ WSM MM5 

Table 1 – the construction of the 16 different WRF ensemble 
members. 
 
The 16 ensemble members were run for 32 different 
days, at considerable computational expense (nearly 
175,000 CPU hours).  We thank the Open Science 
Grid (OSG) for donation of these computing 
resources to this study. 



3. RESULTS 
 
The results presented are from 16-member ensemble 
output from May 3rd, 2007 to May 23rd, 2007.  This 
represents the data available at press time.  In the 
presentation, an assessment of ensemble forecasts  
through mid-June will be presented. 
 
(a) Ensemble Mean Forecasts 
 
As a first measure of the skill of the ensemble to 
predict precipitation, simple equal weighting ensemble 
mean forecasts of precipitation were compared to 
stage 4 precipitation data.  The comparison area was 
the domain of the inner nest of our ensemble 
members – shown in figure 1.  Note that comparisons 
are for only the inner nest (4 km resolution) forecasts.  
For the comparisons, we only count those gridpoints 
where either the ensemble mean forecast or the 
stage-4 precipitation data totaled 0.01”.  Those 
gridboxes for which both the ensemble mean and the 
stage-4 data were zero were not included in the 
averaging. 
 
When evaluating the ensemble mean forecasts, we 
bin members by initialization time, by boundary layer 
scheme, by moist physics scheme, and by land 
surface scheme.  In essence, our 16-member 
ensemble is split into two 8-member ensembles using 
four different criteria.  This leads to 8 00Z members 
and 8 06Z members, 8 YSU members and 8 MYJ 
members, and so on. 
 
i. Precipitation in 3-hour increments 
 
Evaluation of the ensemble mean precipitation 
forecasts shows that for the full 16-member ensemble 
as well as every 8-member sub-ensemble, there is an 
over prediction of precipitation.  All members have a 
‘wet-bias’.  There are, however, patterns to the 
biases.  Results are shown in figure 2. 
 
FIGURE 2 
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Figure 2. Bias in ensemble mean forecasts as compared to 
Stage-4 Precipitation Data.  In addition to the mean of the 
full 16-member ensemble, ensemble members are stratified 

by initialization time, boundary layer scheme, moist physics 
scheme, and land surface scheme.  Values in millimeters. 
 
 
In the first few hours of the forecast, the 00Z initialized 
members have a less pronounced bias, whereas the 
06Z initialized members have a larger wet bias.  The 
MM5 soil scheme members have a larger wet bias 
than the Noah soil scheme members – and most 
pronounced in the daytime hours.  The Lin moist 
physics and MYJ boundary layer members produce a 
little more precipitation than their WSM and YSU 
counterparts.    
 
ii.  Precipitation for the entire forecast 
 
In addition to calculating the bias, the mean squared 
error is also used to evaluate model skill.  Results are 
shown in figure 3. 
 
FIGURE 3 

Mean Squared Error - All forecast times

18

20

22

24

26

00Z 06Z LIN WSM YSU MYJ NOAH MM5 ALL

M
S

E
 (

m
m

2)

Figure 3. Mean squared error of all ensemble-mean 
forecasts at all forecast times.  Values in millimeters 
squared. 
 
If no bias correction is applied, the most accurate 
ensemble mean forecasts are from the 8-member 
ensemble using WSM for moist physics.  Those using 
the MYJ boundary layer and those using the NOAH 
land surface scheme also fare slightly better than the 
mean forecasts from the full 16-member ensemble. 
 
In contrast to varying the physics options, varying the 
initial conditions has a negative impact on ensemble 
mean forecasts.  The mean of the 8 00Z members 
and the mean of the 8 06Z members has a greater 
mean squared error than the full 16-member 
ensemble.   
 
(b) Probabilistic Forecasts 
 
Probabilistic forecasts of precipitation were made by 
summing the number of forecasts for which 
precipitation forecasts exceeded a given amount.   
These forecasts were compared to the event 
occurring in the stage-4 precipitation data.  Only 
gridpoints where either the precipitation value was at 
or above the threshold amount and the probabilistic 



forecast was greater than zero were included.  
Gridpoints where there were there were neither 
predictions of more than 0% nor verified values of the 
threshold value were not included in the summary 
statistics. 
 
i. Probability of 0.10” of precipitation in 3-hours 
 
Figure 4 shows the average difference between the 
ensemble mean forecast (between 1/16 and 1) and 
the verified value (0 or 1) for the prediction of 0.10” of 
precipitation in a 3-hour period.  Notice that the 
greatest number of forecasts occurs during the 
afternoon hours – consistent with the diurnal pattern 
of convection.   
 
In addition to having a high bias in total amount of 
precipitation, the ensemble mean forecasts also have 
a high bias in the area coverage of precipitation – all 
forecast biases are positive.  The patterns of bias are 
also consistent with the bias in total precipitation.  The 
06Z initialized members, which had a greater wet bias 
in total amount, also have a greater high bias in the 
predicted area of 0.10” or greater precipitation.   
 
FIGURE 4 

Probabilistic Forecasts 0.10" in 3-hours
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Figure 4. Mean squared error of all ensemble-mean 
forecasts at all forecast times.  Values in millimeters 
squared. 
 
ii. Probability of 1.00” of precipitation in 3-hours 
 
Figure 5 shows the average difference between the 
ensemble mean forecast (between 1/16 and 1) and 
the verified value (0 or 1) for the prediction of 1.00” of 
precipitation in a 3-hour period.  Notice that the 
number of forecasts is about 1/10th the number of 
0.10” precipitation in 3-hours forecasts.  Clearly, 1.00” 
of precipitation in a 3-hour period is a more rare 
occurrence than 0.10” of precipitation in 3-hours. 
 
Again, the ensemble mean forecasts have a high bias 
in the area coverage of precipitation – all forecast 
biases are positive.  The patterns of bias are also 
consistent with the bias in total precipitation.  The 06Z 
initialized members, which had a greater wet bias in 
total amount, also have a greater high bias in the 
predicted area of 1.00” or greater precipitation.  In 

contrast to the prediction of total precipitation amount, 
or of area coverage of 0.10” in a 3-hour period, it was 
the full 16-member ensemble that gave the most 
accurate predictions of area coverage of 1.00” of 
precipitation in 3-hours – none of the 8-member ‘sub-
ensembles’ fared better. 
FIGURE 5 

Probabilistic Forecasts 1.00" in 3-hours

0%

5%

10%

15%

20%

06Z-
09Z

09Z-
12Z

12Z-
15Z

15Z-
18Z

18Z-
21Z

21Z-
00Z

00Z-
03Z

03Z-
06Z

06Z-
09Z

09Z-
12Z

12Z-
15Z

15Z-
18Z

18Z-
21Z

21Z-
00Z

0

6000

12000

18000

00Z 06Z LIN WSM YSU MYJ
NOAH MM5 ALL COUNT  

Figure 5. Mean squared error of all ensemble-mean 
forecasts at all forecast times.  Values in millimeters 
squared. 
 
4. CONCLUSIONS 
 
A 16-member ensemble can provide useful guidance 
for the prediction of precipitation on small scales.  
Results give insights on how to best construct an 
ensemble for precipitation prediction.  For instance, 
the mean of the 8 00Z members and the mean of the 
8 06Z members both have a greater mean squared 
error than the full 16-member ensemble.  The 
inference is that if one is going to construct an 
ensemble for high resolution QPF, the worst path to 
take is to have all members use the same initial 
conditions.   
 
Improvement of the prediction where the precipitation 
will fall also impact the design of ensembles.  For 
prediction of very high amounts of precipitation (1inch 
in a 3 hour period), the most accurate forecasts came 
from the full 16-member ensemble, though 8-member 
ensembles all using WSM moist physics (but varying 
initial conditions, land-surface scheme, and PBL-
scheme) were nearly as accurate. 
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