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1. Introduction 
 

The 4-dimensional variational data assimilation 
(4D-Var) (Le Dimet and Talagrand, 1986; Lewis and 
Derber, 1985) has been pursued actively by research 
community and operational centers over the past two 
decades. The 5th generation Pennsylvania State 
University – National Center for Atmospheric Research 
mesoscale model (MM5) based 4D-Var (Zou et al. 
1995; Ruggiero et al. 2006), for example, has been 
widely used for more than 10 years. There are also 
successful operational implementations of 4D-Var (e.g. 
Rabier et al. 2000).  

The 4D-Var technique has a number of advantages 
over 3-dimensional schemes including the abilities to:  

1) Use observations at the almost exact times (to 
the width of the observation windows, see the 
discussion in the next section) that they are 
observed, which suits most asynoptic data, 

2) Implicitly use flow-dependent background 
errors, which ensures the analysis quality for 
fast developing weather systems, and 

3) Use a forecast model as a constraint, which 
enhances the dynamic balance of the final 
analysis. 

The last mentioned advantage also implies that the 
current Weather Research and Forecasting model (WRF) 
based 3-dimensional variational data assimilation 
system (Barker et al. 2004b), which is developed from 
MM5 3D-Var (Barker et al. 2004a), should be 
enhanced with a 4-dimensional capability, using the 
WRF forecast model as a constraint, in order to provide 
the best initial conditions for the WRF model.  

The 4D-Var component of the expanded 3/4D-Var 
system (known as WRF-Var, Barker et al. 2005), 
hereafter referred to as WRF 4D-Var, has undergone 
extensive development since 2004. It uses the WRF 
model and 3D-Var as its basic components (Huang et al. 
2005).  
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The 4D-Var prototype was built in 2005 and has 

under continuous refinement since then.  Many single 
observation experiments have been carried out to 
validate the correctness of the 4D-Var formulation. A 
series of real data experiments have been conducted to 
assess the performance of the 4D-Var (Huang et al. 
2006). Another year of fast development of 4D-Var has 
led to the completion of a basic system, which will be 
described in section 3.  

2. The WRF 4D-Var Algorithm    
 

The WRF 4D-Var follows closely the incremental 
4D-Var formulation of Courtier et al. (1994), Veersé 
and Thépaut (1998), and Lorenc (2003). The data flow 
and program structure of WRF 4D-Var are given in Fig. 
1.  

The input to WRF 4D-Var is as the following. The 
observations are grouped into K windows, yk (k=1,K). 
A short-range forecast is used as the background, xb. 
The background error covariance matrix, B, and the 
observation error covariance matrix, R, are known by 
assumption. The lateral boundaries, WRFBDY, are 
required to integrate the WRF model over a time period. 
The 3D-Var solution can be obtained by setting K=1 
and removing WRF model related components. 

Both 3D-Var and 4D-Var techniques within WRF-
Var include outer-loops and inner-loops. The outer-
loops solve the nonlinear aspects of the assimilation 
problem, which for 4D-Var includes the integration of 
the full nonlinear model, while the inner-loops run a 
minimization algorithm for a quadratic problem. Using 
superscript n for the outer-loop index, the analysis 
vector, xn, is the final output of WRF 4D-Var. 

For the inner-loops, the minimization starts from a 
guess vector, xn-1 (the analysis vector from the previous 
outer-loop). For the first outer-loop, n=1, xb is normally 
taken as the guess vector, x0. It should be stressed that 
in the incremental formulation the background vector 
and the guess vector should not be mixed. They are the 
same only during the first outer-loop.  

Mathematically WRF 4D-Var minimizes a cost 
function J,  
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where Jb is the background constraint which  penalizes 
the analysis towards the background, Jo is the 
observation constraint penalizing the analysis towards 
the observations, and Jc is the balancing constraint 
penalizing the analysis towards a balanced state. The Jc 
formulation implemented in WRF 4D-Var follows 
closely the form in Gustafsson (1992), Gauthier and 
Thépaut (2001), and Wee and Kuo (2004). 

For the preconditioning, a variable transform,  
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where B = UUT (Barker et al. 2005);  superscripts -1 
and T denote inverse and adjoint of a matrix or a linear 
operator; dk are the innovation vectors for observation 
window k: 
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Hk, Hk and Hk
T

 are the nonlinear, tangent linear and 
adjoint observation operators over observation window 
k, which transform atmospheric variables between the 
gridded analysis space and observation space; Mk, Mk 
and Mk

T
 are the nonlinear, tangent linear and adjoint 

models, which propagate in time the guess vector xn-1, 
analysis increments Uvn and analysis residual, (.) in 
Equation (3), respectively; SW-V, SV-W, SW-V

 T and SV-W
T 

are the WRF 4D-Var specific operators which 
transform variables (e.g. between T and q) and grids 
(between A-grid and C-grid) between VAR and WRF+; 
fi is the modified coefficients for the digital filter 
(Lynch and Huang, 1992; Gauthier and Thépaut, 2001), 
γdf is the weight assigned to Jc term. 

WRF, WRF+, VAR and COM are the 4 major 
components of WRF 4D-Var in terms of software 
structure (Fig. 1): 

 

 
 

Fig. 1. The data flow and program structure of WRF 4D-Var.  
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I.  WRF 
 

The Advanced Research WRF model (ARW, 
Skamarock et al. 2005) is referred to here as 
WRF_NL. The ARW solves the compressible, 
nonhydrostatic Euler equations which are cast in flux 
form and conserve both mass and energy. The model 
has terrain-following vertical coordinate and 
Arakawa C-grid staggering horizontal grid. In 
addition to the wide range of physics options, the 
high-order numerical methods including a 3rd order 
Runge-Kutta time-split integration scheme and the 
2nd to 6th order advection options make the ARW 
suitable for multi-scale numerical simulations and 
forecasts.  

II. WRF+ 
 

WRF+ comprises two models in one framework, 
namely WRF tangent linear model (WRF_TL) and 
WRF adjoint model (WRF_AD), which are compiled 
together into a single executable. The Transformation 
of Algorithms in Fortran (Giering and Kaminski, 
2003) is used to construct the tangent linear model 
and its adjoint from a simplified subset of nonlinear 
WRF model (WRF_NL). The tangent linear and 
adjoint codes passed the standard gradient tests and 
TL/AD tests following Zou et al. (1997). Sensitivities 
studies using WRF_AD have been carried out and 
reported by Xiao et al. (2007). Results in Section 4 
may also be used as a check for the accuracy of 
WRF_TL. 

III.  VAR  
 

VAR contains all the components of WRF 3D-
Var (Barker et al. 2005) plus the 4-dimensional 
related enhancements. Among the enhancements are 
the grouping of observations (i.e., splitting y into yk) 
and their related calculations (replacing H, H and HT 
by Hk, Hk and Hk

T) according to the observation 
windows (k); the calls to WRF_NL, WRF_TL and 
WRF_AD; and the grid/variable transform operators.  

IV. COM  
 
As WRF, WRF+ and VAR are separate 

components, COM manages the communications 
among them. The implementation of COM is hidden 
from the other three components, allowing the 
movement of data to be handled either through disk 
I/O, or for maximum efficiency, through memory.  

When the disk I/O is used, the following files are 
used for the communication: 

WRFINPUT: the full model state at the 
beginning of each outerloop, written out by 
VAR and read in by WRF as initial model 
state; 

NL(1),…,NL(K): K model states, one for each 
observation window, produced by WRF and 
read in by VAR before computing the 
innovation vector dk; 

BS(0),…,BS(N): N+1 model states, one for each 
time step, produced by WRF and read in by 
WRF+ as basic states; 

TL00: the initial model state for the tangent 
linear model, written out by VAR after the 
U and SV-W transforms and read in by WRF+; 

TL(1),…,TL(K): K (tangent linear) model states, 
one for each observation window, produced 
by WRF+ during the tangent linear 
integration and read in by VAR before 
computing the adjoint forcing (AF), defined 
below; 

TLDF: the digital filter forcing [the last 
summation in Equation (3)], 

fi MiSV -WUv
n
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written out by WRF+ at the end of the 
tangent linear integration and read in by 
WRF+ at the beginning of the adjoint 
integration; 

AF(K),…,AF(1): K files with AF for each 
observation window k,  
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 written by VAR and read in by WRF+ 

during the adjoint integration; 
AD00: the output of WRF+ after the adjoint 

model integration, read in by VAR before 
the SV-W

T and UT transforms. 
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3. The basic system 
 

The WRF 4D-Var prototype was built in 2005. It 
has been under continuous refinement since then 
(Huang et al. 2006). Collaborative effort during the 
last year results in a basic system of WRF-Var (4D, 
version 2.2). It has the following features:  

1) It runs as a combination of WRF (the 
released version 2.2), WRF+ (the WRF 
tangent linear model and adjoint model) and 
WRF-Var (the release version 2.1 with 4D-
Var extensions) executables,  

2) It uses system calls to invoke the three 
executables,  

3) It uses disk I/O to handle the communication 
among WRF, WRF+ and VAR,  

4) It can run on a single processor as well as 
multi-processors,  

5) It has a penalty term, Jc, to control noise 
during the minimization, and 

6) It includes a simple vertical diffusion with 
surface friction scheme and a large-scale 
condensation scheme in addition to the full 
dynamics in WRF+. 

The parallel multiple program multiple data 
(MPMD) system architecture of WRF 4D-Var has 
demonstrated encouraging performance and made 
cycling data assimilation experiments possible.  

Figure 2 shows a typical real-case example of the 
cost functions (Jo , Jb and Jc) evolving as functions of 
minimization simulations (iterations). For this 
particular case WRF 4D-Var reaches the minimum, 
defined as the gradient norm reduces to 1% of its 
original value, in about 40 iterations. 

 

 
 

Fig. 2. The cost functions (Jb, Jo and Jc) as functions 
of minimization simulations (iterations).  

4. WRF 4D-Var structure functions 
 
Analysis increments due to a single observation 

produced by a data assimilation system implicitly 
provide structure functions or effective background 
error covariance matrix B (Thépaut et al. 1996). In 
order to compare the implicit structure function of 
WRF-Var in 3D-Var and 4D-Var mode, many single 
observation experiments are carried out. An example 
of these experiments is shown in this section.  

The background, a 6-h forecast valid at 0000 
UTC 25 Jan 2000, is used for both 3D-Var and 4D-
Var. A single temperature observation at 0600 UTC 
is placed at (75 W, 30 N, 500 hPa). The case is 
constructed to demonstrate one of the potential 
problems related to 3D-Var when assimilating 
asynoptic observations. Although this case is 
constructed with a large time difference, the problem 
exists as long as the observation time differs from the 
analysis time. 
The 3D-Var increments [the first panel (00h) of Fig. 
3] show a Gaussian-like structure centered at the 
observation location. This is a graphic presentation of 
the background error covariance matrix, B, or 3D-
Var structure function. The increments are added to 
the background at the analysis time to produce the 
3D-Var analysis. Two forecasts using WRF are then 
made, one from the background and the other from 
the analysis. The differences between the two 
forecasts are shown in Fig. 3. In this particular case, 
as the observation time and analysis time are 6 hours 
apart. The changes made by 3D-Var assimilation of 
observation produce little impact of the model field at 
the time and location of the observations  

The 4D-Var increments have a temporal 
dimension. They are shown in Fig. 4. The increments 
at 06 h (the last panel of Fig. 4) give a graphic 
representation of the background error covariance 
matrix at 06h, MBMT, or 4D-Var structure function. 
In addition to providing a fit to the observation at the 
observation location, it has a clear flow-dependent 
nature. The increments at the analysis time (00 h), the 
first panel of Fig. 4, are small with a center upstream 
of the observation. The 4D-Var analysis is obtained 
by adding the increments at 00 h to the background. 
Again, the differences between the two forecasts, one 
from the background and the other from the 4D-Var 
analysis are shown in Fig. 5. The 6-h forecast from 
the 4D-Var analysis provides a better fit to the 
observation. The fact that the potential temperature 
increments in Fig. 4 and the forecast differences in 
Fig. 5 are similar suggests that the linear 
approximations in 4D-Var are reasonable for this 
case. 
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Fig. 3. The differences of the potential temperature (red/blue contours) at 500mb at 00,01,02,03,04,05,06h from two 

forecasts, one initialized from the background and the other from the 3D-Var analysis. The brown contours are 
geopotential height in the forecast from the background. + indicates the observation location. 

 
5. Cold start experiments 
 

To assess the 4D-Var performance and to test it 
in a near operational configuration, a series of 
experiments have been conducted on Typhoon 
Haitang, which hit Taiwan on 0000 UTC 18 July 
2005 (Guo et al. 2006).  

Five sets of forecast experiments are performed. 
Each set has nine 48-h forecasts initialized at nine 
different analysis times starting from 0000 UTC 16 
July (denoted as 1600) to 0000 UTC 18 July (1800) 
with 6-h apart. Five sets of forecasts differ by their 
initial conditions described as following: 

FGS – forecast initialized from National Center 
for Environment Prediction (NCEP) Global 
Forecast System (GFS) analysis 6-h earlier 
from the analysis time. Its 6-h forecast 
serves as the background field or first guess 
for other data assimilation experiments. 

AVN- forecast from the NCEP GFS analysis 
3DVAR – forecast from the 3D-Var analysis 
FGAT – forecast from a First Guess At 

Appropriate Time (FGAT) analysis [an 
option of 3D-Var, see Lee and Barker (2005) 
and Huang et al. (2005)] 

4DVAR – forecast from the 4D-Var analysis 
The same parameter set and physics options are used 
for all forecast runs. The model domain has 

91x73x17 grid points with a 45 km horizontal 
spacing and 4-min time step. 

The assimilated observations include 
conventional data, satellite data and bogus data from 
the Central Weather Bureau of Taiwan. Table 1 lists 
the numbers of different observation types in a 6-h 
time window, from 0000 UTC and 0600 UTC 16 July. 
At other analysis times, there are also GPS 
refractivity (N) data and QuikScat wind (QS-u, QS-v) 
data (e.g. 212 N, 2594 QS-u and 2605 QS-v at 0600 
UTC 16 July).  

 
Table 1. The numbers of different observation types 

assimilated by 4D-Var at 0000 UTC 16 July. 
 

Obs type u v T p q DZ 
TEMP 727 724 869  697  
SYNOP 119 218 237 226 236  
SATOB 3187 3182     
AIREP 923 930 939    
PILOT 156 160     
METAR 167 191 216  200  
SHIP 69 70 77 79 73  
SATEM      511 
BUOY 67 67  64   
BOGUS 1200 1200 788 788 80  
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Fig. 4. Potential temperature increments at500mb at 00,01,02,03,04,05,06h to a temperature observation at 500mb 

at 06h. + indicates the observation location. 
 
 
 

 
 
Fig. 5. Same as Fig. 3, but for the difference between a forecast initialized from the 4D-Var analysis and from the 

background. 
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The 48-h forecasts of the typhoon track, all started at 
0000 UTC 16 July 2005, are plotted in Fig. 6, 
together with the observed track. The background sea 
level pressure field at initial time is also shown in the 
figure. The forecast initialized from FGS is the worst. 
The forecasts from AVN, 3DVAR and FGAT are of 
similar quality. The 4DVAR analysis leads to the best 
track forecast. 

.  

 
 
Fig. 6. 48-h forecast typhoon tracks from FGS, AVN, 

3DVAR, FGAT, 4DVAR, together with the 
observed track. Forecasts are all made from 
0000 UTC 16 July 2005. The background sea 
level pressure field from FGS is also shown.  

 
The track forecast errors in km averaged over the 

48-h forecast range are listed in Table 2. The best 
forecast at each analysis time is highlighted. It is 
evident that 4D-Var produces superior track forecast 
for Typhoon Haitang over the 2-day period.  

 
Table 2. The track forecast errors in km averaged 

over 48 h for each forecast. 
 

Time FGS AVN 3DVAR FGAT 4DVAR 
1600 159 85 72 77 66 
1606 108 83 67 97 79 
1612 93 100 95 82 137 
1618 116 67 103 52 54 
1700 80 66 68 62 52 
1706 83 80 80 67 65 
1712 111 104 90 112 128 
1718 113 113 133 129 93 
1800 116 221 192 103 111 
Mean 109 102 100 87 87 
 

Up to now, only the typhoon track forecasts have 
been investigated. Other aspects of the analyses and 
forecasts will also be studied and reported in the near 

future. Observing system experiments will be carried 
out to assess the impact of different observation types, 
in particular, the vortex bogus observations (Guo et 
al., 2006). 
 
6. Cycling experiments 
 

A 4.5-day period from 12 UTC 4 May to 00 
UTC 9 May 2006 was chosen for assessing the 
impact of data assimilation using 3D-Var and 4D-Var 
in cycling mode on the forecast. During this time 
period, a cyclone moved from the west sea cross the 
Korean peninsula and caused heavy precipitations.  

In these experiments, the model domain is the 
same as that of the current Korea Meteorological 
Administration (KMA) regional numerical prediction 
system, but the horizontal resolution is reduced to 30 
km with 60x54x31 grid points. The analysis is done 
every 6-h followed by a 24-h forecast over this 4.5-
day period. In cycling mode, the analysis uses the 6-h 
forecast from the previous analysis as the background, 
except at the very beginning of the experiment when 
the initial model states are obtained by interpolating 
the 30-km operational model fields.  

Two sets of experiments are run over the 4.5-day 
period: 

3DVAR: 3D-Var is used with the interpolated 
model state as the background. Observations 
collected from -3h to +3h around the analysis 
time are assimilated; an example of the 
numbers of different observations is given in 
Table 3. 

4DVAR: 4D-Var is used. The interpolated model 
state valid at 6 h before the analysis time is 
used to make a 3-h forecast. This 3-h forecast 
is then used as the background for 4D-Var 
analysis. Observations collected from -3h to 
+3h around the analysis time are split to hourly 
time slots. The observations used in one 
4DVAR analysis are given in Table 4. Due to 
the data thinning strategy, 4DVAR uses 
significantly more SYNOP and METAR 
observations. There was a small error in the 
4DVAR experiment, which excludes all 
SATOB observations. After 4DVAR analysis 
valid at -3h, another 3-h forecast is run to 
advance the model state to the analysis time. 
The model lateral and lower boundaries are 
updated at -3h and at the analysis time. 

The performance of 4DVAR is evaluated using 
3DVAR as a reference. As this is a major 
precipitation case, the precipitation forecast is 
verified. 
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Table 3 Number of Observations used by 3D-Var on 
2006050412. 

 u v T p q 
TEMP 459 464 519 - 385 

SYNOP 67 59 73 71 72 
SATOB 74 76 - - - 
PILOT 182 195 - - - 

METAR 559 551 614 33 36 
SHIP 1 1 2 2 1 
 
Precipitation skill scores are calculated and 

averaged over 7 days at 73 observation points in 
South Korea. The scores are defined as following: 

 
Hit  (H) event forecast to occur AND did occur 
Miss (M) event forecast not to occur BUT did occur 
False_alarm (F) event forecast to occur BUT did not  

Table 4 Number of Observations used by 4DVAR on 
2006050412. 

 u v T p q 
TEMP 456 461 519 - 384 

SYNOP 253 212 268 191 204 
SATOB - - - - - 
PILOT 185 194 - - - 

METAR 2636 2402 2957 218 240 
SHIP 1 1 2 2 1 

 
Critical Success Index (CSI) = H / ( H + M + F ) 
 

The precipitation scores, CSI of 0.1mm, 5mm, 
15mm and 25mm are showed in Fig. 7. The 
Precipitation forecasts in the 4DVAR experiments 
over the 4.5-day period are significantly better than 
the 3DVAR experiments.  

 
 

 

 

 
 

Fig. 7. Precipitation Verification: 0.1mm, 5mm, 15mm, 25 mm Precipitation. 
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7. Conclusions 
 

In this paper, a brief overview of the 4D-Var 
capability within WRF-Var is given. The WRF 4D-
Var has been built on the multi-incremental 
formulation of WRF-Var. The current status of the 
WRF 4D-Var is characterized by the basic system 
which uses multiple executables, can run on a single 
processor as well as multiple processors and uses 
disk I/O to handle the communication among the 
executables. 

The structure functions of the 4D-Var are studied 
using single observation experiments. The example 
showed in this paper clearly demonstrates the flow-
dependent nature of the analysis increments in 6-h 
assimilation window: a small increment upstream of 
the observation at the beginning of the assimilation 
window; the intensification of the increment in time; 
and the final increment centered at the observation 
location with the structure stretched along the mean 
flow. Comparison between the structure function and 
the difference of nonlinear runs provides us with a 
powerful tool for checking the code correctness and 
the linearization validity made in deriving the tangent 
linear and adjoint models. 

Many cold start real data experiments have been 
conducted, as they can run on single processor and do 
not require a supercomputer. Within the WRF-Var 
framework, 4D-Var can assimilate most observation 
types as 3D-Var does, and it can assimilate more 
observations from non-moving platforms, such as 
SYNOP, than 3D-Var. The results indicate that 4D-
Var is working properly and, on the average, 
outperforms 3D-Var with a similar configuration.  

Cycling experiments have just become possible 
with recent development of the parallel multiple 
programs multiple data system architecture of WRF 
4D-Var. Preliminary results are encouraging and in 
agreement with those from the cold start experiments. 
Further experiments and evaluation are on going. 

The current WRF 4D-Var has a simple vertical 
diffusion scheme and a large-scale condensation 
scheme, in addition to the full WRF dynamics, in the 
tangent linear and adjoint models. As high impact 
weather prediction is receiving more and more 
attention in recent years, further studies will be 
conducted to assess the impact of 4D-Var on WRF 
forecasts of severe weathers, such as heavy rainfall 
events, tropical cyclones, and so on. It is obvious that 
more physics should be added in the tangent linear 
and adjoint models of WRF 4D-Var. 

There are many tunable parameters in WRF-Var, 
for example the variances and scale lengths of the 

background errors. Most of these parameters have 
been tuned for optimizing the 3D-Var performance. 
In all the 4D-Var experiments conducted so far, none 
of these parameters have been touched. Extensive 
tuning experiments are necessary and planned. 
Results will be reported in the near future. 
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