
P2.41 AN ARTIFICIAL NEURAL NETWORK TO FORECAST THUNDERSTORM LOCATION: A SEARCH
FOR MORE RELEVANT LAND SURFACE INPUT DATA

Waylon Collins* and Philippe Tissot**
*NOAA/National Weather Service

**Texas A&M University – Corpus Christi

1. INTRODUCTION
A feed-forward, supervised, multi-layer perceptron Artificial
Neural Network (ANN) was developed to test the hypothesis
that an ANN can be developed to successfully forecast
convective initiation (CI) with an accuracy of 400-km2

(Collins and Tissot, 2007). The ANN domain is an area in
South Texas composed of 286 20-km x 20-km box regions,
13 boxes north-south by 22 boxes east-west. A framework
was established to train 286 separate ANNs (one for each
box region) to predict thunderstorm occurrence within each
box. The ANN inputs included both selected output from a
deterministic grid point numerical weather prediction (NWP)
model – with a horizontal grid spacing of 12km – and sub-
grid scale data that contribute to CI. The logic underlying
this strategy is that NWP model output provides a forecast of
whether the larger scale mesoscale environment is conducive
to CI while the sub-grid scale data determines the extent to
which convection could be triggered at a particular location.
By incorporating both grid scale NWP output and sub-grid
scale data (thus not explicitly accounted for by the NWP)
that contributes to CI, an improvement beyond NWP output
alone is envisaged. This approach represents a paradigm shift
away from the idea of increasing NWP model horizontal
resolution to more accurately and explicitly forecast CI. The
sub-grid scale inputs include land surface temperature (LST)
gradients. Numerous studies (e.g. Avissar and Liu, 1996)
demonstrate that surface heterogeneity (including vegetation
and soil moisture variations) contribute to horizontal LST
gradients which can trigger individual convective cells. This
study represents an attempt to provide more relevant land
surface data inputs to the ANN model, by identifying a
parameter that clearly separates the heterogeneity pattern
contributing to CI from the pattern not conducive to CI. In
their prior work Collins and Tissot (2007) used statistical
parameters range (RG), standard deviation (SD), and the
maximum finite difference (MFD) values in orthogonal
directions as proxies for LST gradients. However high values
of these parameters can be associated to a broad range of
atmospheric and land based processes. This work focuses on
investigating the discriminating potential of selected land
surface parameters in cases for which atmospheric conditions
are favorable to the development of thunderstorms.
Developing such parameters capturing specific land surface
patterns and gradients should subsequently lead to more
accurate thunderstorm ANN predictive models.

2. DATA AND METHODOLOGY
Several proxies for heterogeneity were calculated using three
fundamentally different techniques. The first technique
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was an application of image processing. The second
technique involved actual gradient calculations. The third
technique was statistical in nature. The heterogeneity proxies
were calculated within each of the 286 20-km x 20-km box
regions.

The source data includes both the (1-km grid spaced) daily
and 8-day averaged LST data from the NASA Moderate
Resolution Imaging Spectro-radiometer (MODIS) instrument
aboard the Terra and Aqua satellites. For additional
information, view http://modis.gsfc.nasa.gov. Specifically,
the output from the LST_Day_1km variable or scientific data
set (SDS) from the daily and 8-day mean (the arithmetic
average of valid daily values at each pixel) files with granule
names MOD11A1 (from the Terra satellite) and MYD11A2
(from the Aqua satellite) respectively were used. The choice
of 8-day averaged in addition to the daily files is based on
the limitation of the MODIS data – the existence of clouds
which prevents data collection. There is a greater likelihood
that every pixel within each box region will contain valid 8-
day averaged, rather than daily, data. However, it must be
noted that daily values are more appropriate since the LST
data will be compared to daily lightning data. The original
MODIS data was available on an Integerized Sinusoidal
(ISIN) projection and written to HDF-EOS files. The
software package known as the Modis Reprojection Tool
(http://edcdaac.usgs.gov/landdaac/tools/modis/info/MRT_Us
ers_Manual.pdf) was used to reproject the data to a
geographic projection grid and write the output to separate
HDF-EOS files. The MATLAB® software was used to
import the new HDF-EOS files and output a matrix
containing the LST data for each 20-km x 20-km box.

A literature review reveals that LST has not been used as a
parameter to test the hypothesis that land surface
heterogeneity contributes to CI. Instead, parameters such as
vegetation and soil moisture were used. However, Collins
and Tissot (2007) used LST because (1) the LST adjusts to
soil moisture and vegetation changes and (2) NASA provides
daily MODIS LST, yet does not provide daily MODIS soil
moisture or vegetation. However, NASA does provide 1-km
MODIS 16-day averaged normalized difference vegetation
index (NDVI) data. NASA also provides daily soil moisture
data from its Advanced Microwave Scanning Radiometer –
Earth Observing System (AMSR-E) instrument. However,
the resolution of the AMSR-E data is too coarse for this
study. In this study, we used MODIS NDVI data, aqua
granule MYD13A2. With respect to soil moisture, we
utilized an empirical relationship to compute a soil moisture
index (SMI) for a semiarid environment (Zeng et. al. 2004).
The equation requires only NDVI and LST as inputs. In this
study, the 16-day NDVI and 8-day LST data were used to
compute the SMI.



Figure 1 depicts the time frame of the various data sources
used in this study. The MODIS daily and 8-day averaged
LST and 16-day averaged NDVI are derived from polar
orbiting satellites. The approximate time frame for the
MODIS Terra (Aqua) satellite to move across the ANN
domain to collect data from the LST SDS LST_Day_1km is
1600-1745 (1845-2025) UTC. Output from the Eta NWP
model (e.g. Rogers et. al. 1996), discussed later, are 9-hour
forecasts valid at 2100 UTC. The proxy for CI is the
presence of cloud-to-ground lightning data from the National
Lightning Detection Network (NLDN) (e.g. Orville 1991).
For each case all lightning strikes taking place between 19Z
and 23Z inclusive are included. The overall period of the
data collection is 749 consecutive days (1 June 2004 through
19 June 2006).

Figure 1: Source data time frames. Blue line: Lightning
histogram for all 286 boxes for all 749 days. Yellow shading:
Lightning used for this study. Red (Green) shading: Terra
(Aqua) periods. Thick black line: Eta forecasts valid time.
See text.

In order to extract the LST, SMI and NDVI patterns that
truly correlate with lightning, a simple approach would
involve a separation of the dataset into non-lightning and
lightning cases. However, CI/lightning is hypothesized to
develop in response to both favorable atmospheric conditions
and favorable land surface patterns. This complicates the
analysis since during non-lightning cases, it is likely that the
entire range of possible LST, SMI and NDVI patterns would
occur; in other words, for the non-lightning cases dataset, CI
would not occur, either because the atmospheric conditions
are not favorable, or because the land surface gradients were
not sufficient. However, by restricting the dataset only to
those cases whereby the atmosphere was conducive to CI, it
is reasoned that variations in binary lightning output
(lightning, no lightning) will be due primarily to horizontal
gradients in LST, SMI and NDVI. The filtering of
atmospheric conditions was based on the use of threshold
values of specific parameters that correlate with CI generated
by land surface heterogeneity. The thresholds, based on Eta
output, are as follows: Convective Available Potential
Energy (CAPE) >1000 Jkg-1, Convective Inhibition (CIN) >-

20 Jkg-1, Precipitable Water (PW) >30 kgm-2, both the 10-
meter (m) and 850 millibar (mb) u and v components of the
wind < 5 ms-1, Lifted Index (LI) < -2, and vertical wind shear
within the surface to 850mb layer < 0.005s-1. These
thresholds were used to separate “favorable” from
“unfavorable” atmospheric conditions for CI. The choice of
parameters and threshold values were based on the
subjective evaluation of the lead author, the literature, and
the time series data of these parameters and of lightning for
the period 1 June 2004-19 June 2006 (not shown). See
Collins and Tissot (2007) for more information. From the
“favorable” dataset, histograms of the heterogeneity proxies
for the lightning and non-lightning cases were developed to
test whether certain land surface patterns are truly different
between lightning and null cases. Note that the time
resolution of the Eta output is daily while the LST (NDVI)
output resolution is daily or 8-days (16-days). Thus,
conditions can be favorable or unfavorable for CI during a
given 8 (16) day period. Further, lightning can both occur
and not occur during each 8 (16) day period.

The LST source data used has 1-km grid spacing. Thus, for
each box region, a maximum of 400 data points were
possible. Collins and Tissot (2007) used daily LST values,
and computed the statistical parameters within each box
region without regard to the number of data points. However,
due to the predominance of clouds within the daily source
data, output from box regions containing valid data points
representing only a small percentage of the maximum, is less
likely to be representative of the box region. Thus, gradients
were calculated using the foregoing MODIS data with the
restriction that missing data pixels for each box region
comprise less than 10% of the maximum number of pixels.
When applied to daily LST maps this restriction eliminated
most lightning cases leading to the focus of the study on 8-
day LST and 16-day NDVI data sets. For each box region,
the following smoothing technique was implemented – Each
of the data points was replaced with the mean of the eight (8)
adjacent points and the point in question. The motivation
behind the smoothing is to minimize gradients less than
length scale 5-km. Results from Lynn et. al (2001) and
Avissar and Schmidt (1998) suggest that when micro-α and
meso-γ wind patterns develop in response to distinct regions 
of significantly different temperatures, the length scale of
each region should exceed 5-km. No attempts were made to
filter questionable data.

Heterogeneity Proxy #1: Image Processing Output
For this study, a proxy chosen for land surface heterogeneity
within each box region was the Canny filter edge count
output (EC) from the MATLAB® software package. The
Canny algorithm (Canny 1986) is a widely used image
processing technique to detect edges within an image. The
Canny method is more likely than other edge detection
algorithms to detect true weak edges, and less likely to be
influenced by noise in the data set. The MATLAB® function
BW=edge (I,‘canny’,thresh) was used to calculate the
number of edge counts, where I=data matrix and ‘canny’
designates the Canny method. The parameter ‘thresh’=[L,H],
where L=low threshold and H=high threshold. For this study
[L,H]=[0.40,0.99] and was held constant for the entire data
set. See www.mathworks.com for additional information.



The processing of the data within each box region using the
Canny method was based on the reasoning that an image
processed edge would represent a boundary separating
regions of significantly different LST, NDVI, and SMI
values.

Heterogeneity Proxy #2: Traditional Gradient Calculation
Another proxy computed from the data was the maximum
gradient (MG). The MG in each box region was determined
by first calculating the gradient (finite difference divided by
distance) between each data point and every other data point,
resulting in a maximum of 400 gradient calculations. The
maximum gradient was then chosen. It must be noted that
although a horizontal thermal contrast is necessary in order
to generate the mesoscale wind pattern conducive to CI,
Segal et. al. (1998) has shown that the wind magnitudes may
be invariant to the intensity of the gradient at the boundary.
Nevertheless, we expect a minimum gradient threshold to
emerge from the data set.

Heterogeneity Proxy #3: Bimodality Coefficient
The bimodality coefficient (BC) was calculated from an
empirical relationship that relates BC to the statistical
parameters kurtosis and skewness (SAS Institute Inc. 1999).
A BC value exceeding 0.555 suggests a bimodal or
multimodal distribution. Again, results from Lynn et. al
(2001) and Avissar and Schmidt (1998) suggest that when
micro-α and meso-γ wind patterns develop in response to
distinct regions of significantly different temperatures, the
length scale of each region should exceed 5-km. It is
reasoned that a perfectly bimodal distribution of LST, SMI,
or NDVI within the 20-km x 20-km box regions in this study
would represent two distinct regions with a length scale of at
least 10-km.

3. RESULTS
Figures 2-7 depict the histograms of the SMI and 8-day LST
(NDVI not shown) EC, MG, and BC for lightning (L) and
non-lightning (NL) cases, from a maximum of 214,214 box
cases (286 boxes/day x 749 days). Owing to cloud cover near
CI, gradient proxy output based on the daily LST data was
miniscule and thus insufficient to draw meaningful
conclusions. Thus, results from the 8-day LST and 16-day
NDVI data were used. Unfortunately for each proxy, the
difference between the histograms of L versus NL cases was
not significant. These results suggest the following
possibilities: (1) land surface heterogeneity was not a
significant contributor to CI for the specific storms that
developed over the 286 box domain. Our dataset was 749
consecutive days. However, it’s possible that the
contribution of land surface heterogeneity is seasonally
dependent. We did not examine that possibility; (2) the
MODIS 8-day (16-day) LST (NDVI) source data was not
appropriate when assessing the relationship between MODIS
data and daily lightning. We are interested only in binary
lightning output with a time resolution of 1 day or less. Thus,
a comparison between the 8-day and 16-day MODIS output
and lightning with a corresponding time resolution was not
conducted. We need to acquire/calculate gradient proxies on
a time resolution of ≤ 1 day; (3) most thunderstorms within a
box region originated from another box region. A
thunderstorm within a box at a given time did not necessarily

form in that box, or entirely from processes within such box.
A storm could form within a box then simply move into
another box. In addition to surface heterogeneity, gust fronts
from neighboring storms, sea breezes, synoptic fronts, and
other processes can also trigger convection.

4. CONCLUSIONS
There exists a broad consensus that surface heterogeneity
can generate mesoscale wind patterns that can trigger CI.
However, to the extent that land surface heterogeneity
contributed to CI during the period of this study, the results
herein suggest that the specific land surface heterogeneity
patterns that contribute to CI were not identified. The
inability to discover a relationship between convection and
land surface heterogeneity could simply reflect the lack of
MODIS data with a higher time resolution. Further, the
contribution of land surface heterogeneity to CI could be
seasonally dependent. Lastly, land surface heterogeneity may
have represented a small fraction of the triggering
mechanisms responsible for CI in this study. The search for a
surface pattern that contributes to CI is ongoing. The
literature is replete with studies which suggest that high
resolution soil moisture gradients contribute to CI. Based on
the reasoning that the use of higher time resolution data is
warranted, we plan to calculate (on the order of 1-km) soil
moisture at higher time resolutions. A technique to consider
is the one proposed by Jiang and Cotton (2004) who used an
ANN to estimate soil moisture. Further, data mining
techniques such as clustering and singular value
decomposition (SVD) (e.g. Bretherton et. al. 1992) will be
examined. SVD will allow for the extraction of the LST, soil
moisture and NDVI horizontal patterns that correlate with
lightning variations. Both clustering and SVD focus on
patterns rather than gradients. Until surface patterns or
gradients that discriminate between lightning and non-
lightning cases can be identified, the use of land surface data
cannot be relied on to improve the performance of the ANN
to predict CI.
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Figure 2: Histograms of SMI Canny Edge Counts (EC)
from "favorable" data set, with (top) and without (bottom)
lightning.

Figure 3: Histograms of SMI Maximum Gradient (MG)
from "favorable" data set, with (top) and without (bottom)
lightning.

Figure 4: Histograms of SMI Bimodality Coefficient (BC)
from "favorable" data set, with (top) and without (bottom)
lightning.



Figure 5: Histograms of 8-day LST Canny Edge Counts
(EC) from "favorable" data set, with (top) and without
(bottom) lightning.

Figure 6: Histograms of 8-day LST Maximum Gradient
(MG) from "favorable" data set, with (top) and without
(bottom) lightning.

Figure 7: Histograms of 8-day LST Bimodality Coefficient
(BC) from "favorable" data set, with (top) and without
(bottom) lightning.


