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1. Introduction 
  

Information about the drop size distribution (DSD) 
is essential for understanding precipitation physics, es-
timating rainfall, and improving microphysics param-
eterizations in numerical weather prediction (NWP) 
models (Steiner et al. 2004). The characteristics of rain 
DSDs are often associated with the types of storms (e.g., 
convective versus stratiform rain) and their stages of 
development (e.g., the developing versus decaying 
stage, Brandes et al. 2006). Strong convective rain usu-
ally contains both large and small drops and has a broad 
DSD while the decaying stage is often dominated by 
small drops.  Stratiform rain usually contain1s relatively 
larger drops but has a low number concentration for a 
given rain rate (Zhang et al. 2006).  
 Rain DSDs are usually represented by distribution 
models such as the exponential distribution, gamma 
distribution, and lognormal distribution. A DSD model 
usually contains a few free parameters that should be 
easy to determine and the model should be capable of 
capturing the main physical processes and properties. 
The exponential distribution is the most commonly used 
DSD model that has some of these properties, and it is 
given by 

0( ) exp( )N D N D= !" .   (1) 

It contains two free parameters, N0 and Λ.  A single-
moment bulk microphysics model predicts one of the 
moments of the DSD which determines one of the two 
parameters. The intercept parameter N0  is usually speci-
fied so that Λ is uniquely related to the water content, 
W, which is the 3rd moment of the DSD that is predicted. 
The Marshall−Palmer (M-P, Marshall and Palmer 1948) 
exponential DSD model with the N0 value fixed at 8000 
m−3 mm−1 = 8×106 m−4 is widely used for representing 
warm rain (Kessler 1969) as well as ice (e.g., Lin et al. 
1983; Hong et al. 2004) microphysics. 
 However, disdrometer observations and numerical 
model simulations indicate that N0 and number concen-
tration (Nt) are not constant, but vary depending on pre-
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cipitation type, rain intensity and stage of development. 
Sauvageot and Lacaux (1995) showed variations of both 
N0 and Λ from impact disdrometer measurements. Re-
cent observations by 2D Video Disdrometers (2DVD) 
suggest that rain DSDs are better represented by a con-
strained Gamma distribution (Zhang et al. 2001) that 
also contains two free parameters. In Zhang et al. 
(2006), the constrained Gamma model was further sim-
plified to a single parameter model for bulk microphysi-
cal parameterization and the model produced more accu-
rate precipitation system forecasts than the M-P model. 
Since the exponential distribution model is widely used, 
a diagnostic relation of N0 as a function of W would im-
prove rain estimation and microphysical parameteriza-
tion that are based on such an improved model. 
 In this study, we derive a diagnostic N0 relation 
from rain DSD data that were collected in Oklahoma 
using disdrometers. To minimize the error effects intro-
duced in the fitting procedure, we formulate the problem 
with a relation between two DSD moments. A diagnos-
tic relation is found from the relation between two mid-
dle moments. Section 2 describes methods of deriving 
the diagnostic relation and section 3 presents results of 
diagnosing N0 from water content using 2DVD meas-
urements. In Section 4, we discuss applications of the 
diagnostic relation in the parameterization of rain phys-
ics and microphysical processes. Final summary and 
discussions are given in section 5. 

2. Diagnosing methods  
 
 The diagnostic relation for the intercept parameter 
N0 as a function of water content can be derived using 
two different approaches.  
 One approach is to first find the DSD parameters 
(N0, Λ) by fitting DSD (e.g., disdrometer) data to the 
exponential function (1) for each DSD, and then plot the 
estimated N0 versus W for the whole dataset for fitting a 
mean relation.  
 The nth moment of the exponential DSD (1) is 

  ( 1)
0( ) ( 1)n n

n
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= = " # +$  . (2) 

Hence, the DSD parameters,  N0 and Λ, can be deter-
mined from any two moments (Ml, Mm) as  
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When N0 is obtained along with the water content W for 
DSD data sets, a N0 – W relation can be found through 
another fitting procedure, e.g., the power-law fitting. It 
is noted that the values of the estimated N0 depend on 
which two moments are used and on the accuracy of the 
two moment estimates.  Since the estimates of both the 
moments ( ,

l m
M M ) have error, the DSD parameters 

(
0
,N ! ) obtained from them will also have error.  The 

natural variation in DSDs also causes a large scatter in 
the N0 – W plot (see Fig.1 in next section). Hence, the N0 
– W relation derived from the above procedure tends to 
have larger errors. 
 

 
Fig. 1: Dependence of intercept parameter (N0) on wa-
ter content (W).  Scattered points are fitted results from 
a pair of DSD moments. Straight lines are derived rela-
tions using the moment relation method. 
 

To minimize the error effects introduced in the fit-
ting procedures, we propose an alternative procedure for 
obtaining the N0 – W relation. Here, we first seek to es-
tablish a relation between two DSD moments. With this 
relation, the exponential distribution is reduced to hav-
ing a single free parameter so that N0 can be determined 
from W. Suppose that two DSD moments Ml, and Mm 
are related by a power-law relation: 
 b

l m
M aM= ,       (5) 

where a and b are coefficients that can be estimated 
from disdrometer observations. 
 From Eq. (2) for the third moment, we have water 
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tuting (2) into (5) for Ml and Mm, and making use of the 
relation for ! , we obtain 
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 Hence, (6) - (9) constitute a general formulation 
for deriving a N0 –W relation using a statistical relation 
between two DSD moments. When the coefficients a 
and b in the relation (5) are determined from a set of 
DSD data, we have a diagnostic relation between the 
water content W and the intercept parameter N0. This is 
the procedure that will be used in the next section with a 
disdrometer data set. 

3. Derivation of the N0–W relation from 
disdrometer observations 
 
 We test our method for deriving the N0 – W rela-
tion using disdrometer data collected in Oklahoma dur-
ing the summer seasons of 2005 and 2006 (Cao et al. 
2007). Three 2DVDs, operated respectively by the Uni-
versity of Oklahoma (OU), National Center for Atmos-
pheric Research (NCAR) and National Severe Storms 
Laboratory (NSSL) were deployed at the NSSL site in 
Norman, Oklahoma, and at the Southern Great Plains 
(SGP) site of the Atmospheric Radiation Measurement 
(ARM) program. The ARM site is located approxi-
mately 28 km south of the NSSL site.  A total of 58 days 
of disdrometer data covering a total of 13379 minutes of 
rainfall periods with total drop counts greater than 10 
were collected. Among them are 1092 minutes of data 
that have side-by-side measurements by two 2DVDs. 
The recorded raindrops within each minute were proc-
essed to produce one-minute DSD samples, yielding a 
total of 13379 DSDs. 
 With the side-by-side data, measurement errors of 
DSDs were quantified. The sampling errors are further 
reduced by sorting and averaging based on two parame-
ters (SATP), a method that combines DSDs with similar 
rainfall rates (R) and median volume diameters (D0) 
(Cao et al. 2007). There are 1092 quality-controlled 
DSDs after SATP processing for the dataset. The DSD 
moments are estimated by the sum of weighted DSDs as 
defined in (2). Cao et al. (2007) showed that the middle 
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moments (M2, M3 and M4) have the least error (see their 
Table 1).  
 The exponential DSD parameters N0 and Λ are 
estimated from the moment pairs of (M0, M3), (M2, M4), 
and (M3, M6) using Eqs. (3) and (4). The exponentially-
fitted N0 values are plotted versus the rain water content 
in Fig. 1. As expected, there is a large scatter in the N0 – 
W plot because of measurement and model errors as 
well as natural variations. Also, different moment pairs 
produce different results of N0 due to differences in es-
timation error and error propagation in the fitting proce-
dure. It is clear that there is a positive correlation be-
tween N0 and W. However, there will be high uncer-
tainty if we were to fit the data points of this plot di-
rectly to a N0 – W relation.  

Instead, an N0 – W relation is derived from a mo-
ment relation as outlined in section 2.  Figure 2 shows 
the scatter plots of moment estimates for the pair of (M2, 
M4), and a power-law relation is obtained as 

0.836

2 4
1.42M M= ,    (10) 

i.e., a = 1.42 and b = 0.836 in Eq.(5). The correlation 
between the moments is high, with a correlation coeffi-
cient of 0.88 in the linear domain and 0.93 in the loga-
rithmic domain. Substituting for a and b in (6)-(9), we 
obtain α = 6257 and β = 0.642, therefore 

0.642

0 2 4( , ) 6257N M M W= .   (11) 
This N0 - W  relation is shown in Fig. 1 along with those 
derived from moment pairs (M0, M3) and (M3, M6).  The 
lower (higher) moment pair yields a relation with a 
larger (smaller) power. As discussed earlier, the middle 
moment pair (M2, M4) has smaller error and therefore 
relation (11) is recommended.  

 
 
Fig. 2: Inter-relationships among DSD moments based 
on disdrometer measurements. Scattered points are di-
rect estimates from disdrometer measurements. Straight 
lines represent fitted power-law relations.  
 

 
Fig. 3: Time series comparison of physical parameters: 
intercept parameter (N0), total number concentration 
(Nt) water content (W), and median volume diameter 
(D0) for a rain event starting on July 21, 2006. Results 
are shown for disdrometer measurements and fitted val-
ues using exponential, diagnostic-N0, and fixed-N0 DSD 
models.  
 

For a better understanding of the N0 – W relation 
(11), Figure 3 shows an example of  N0 values along 
with other physical parameters (Nt, W, and D0) as a 
function of time for a rain event starting on July 21, 
2006. It was a strong convective storm followed by 
stratiform rain as well as weak convection passing over 
the OU disdrometer deployed at the ARM site at Wash-
ington, Oklahoma.  The water content is very low during 
the stratiform precipitation period, but the median vol-
ume diameter D0 is comparable to that of strong convec-
tion.  The comparison between exponentially-fitted N0 
values from DSD moments M2 and M4 and those diag-
nosed from W using (11) is plotted in Fig. 3a.  As shown 
in Fig. 3b, the moment fitting of the exponential DSD 
model yields a good estimate of total number concentra-
tion Nt as compared with the direct estimates from DSD 
data (discrete “+”). Here, the fitted N0 can be considered 
as “truth” because N0 is a model parameter which is 
obtained through the fitting procedure of Eqs. (2) - (4).  
It is clear that the diagnosed N0 captures the main trend 
of the observed rain storm very well in a dynamic range 
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of more than two orders of magnitude; that is, from an 
order of 104 for strong convention to 10 for light strati-
form precipitation. In comparison, the fixed-N0 M-P 
model overestimates N0 except for heavy convective 
rain.  Figure 3d compares median volume diameter D0  
calculated from the DSD data, estimated using the diag-
nostic-N0 model and that with the fixed-N0 model.  
Again, the diagnostic N0 – W relation produces a much 
better agreement with the measurements than does the 
fixed-N0 model.  

4. Application to warm rain microphysi-
cal parameterization  
 
 The warm rain microphysical processes related to 
the DSD include rain evaporation, accretion of cloud 
water by rain water, and rain sedimentation. The micro-
physical parameters of these processes based on the ex-
ponential DSD model have been derived by Kessler 
(1969: Table 4).  After unit conversion, the evaporation 
rate (Re in kg kg-1 s-1), accretion rate (Rc in kg kg-1 s-1), 
mass-weighted terminal velocity (Vtm in m s-1), and re-
flectivity factor (Z in mm6 m-3) are obtained as 

-5 7 / 20 13/20
e 0R 2.17 10 ( )We vs vE N q q= ! " , (12a) 

-3 1/8 7/8

c 0
R 1.65 10 Wc cE N q= ! ,   (12b) 

( )
0.51/8 1/8

tm 0 0
V 16.4 /N W ! !"= ,   (12c) 

7 3/ 4 7 / 4

0
Z 1.73 10 N W

!
= " .    (12d) 

where Ee and Ec are the evaporation and accretion effi-
ciency factors, respectively (normally taken as 1), W is 
rain water content in g m-3 as before ( 1000 rW q!= ), qv, 
qc and qr are, respectively, the water vapor, cloud water 
and rain water mixing ratios in kg kg-1. 
 Substituting the diagnostic relation (11) into (12) 
and assuming unit saturation deficit and unit cloud water 
mixing ratio as well as unit efficiency factors, we obtain 
a parameterization scheme based on the diagnostic N0. 
The terms corresponding to those in Eq. (12) are listed 
in Table 1 along with those of the standard fixed-N0 M-P 
model. The coefficients of these terms are similar for the 
two schemes, but the powers are substantially different. 
The larger power in evaporation rate means more (less) 
evaporation for heavy (light) rain compared to the fixed-
N0 model.  The smaller power in the reflectivity formula 
for the diagnostic-N0 model gives smaller (larger) reflec-
tivity than the fixed N0 for heavy (light) rain.  This may 
lead to a better agreement between numerical model 
forecasts and radar observations.  The former tends to 
over-predict large reflectivity values and under-predict 
low reflectivity values. In this sense, the diagnostic-N0 
model has similar properties as the simplified-
constrained-gamma model investigated in Zhang et al. 
(2006)  

 

Table 1: Parameterization of warm rain processes with 
diagnostic N0 and fixed N0 

 
Parameterized 

quantity Diagnostic N0 Fixed N0 
N0, m-3 mm-1 0.642

6257W  8000 

Re, kg kg-1 s-1 -4 0.875
4.63 10 W!  

! 

5.03"10
-4
W

0.65  
Rc, kg kg-1s-1 4.92x10-3W0.955 

! 

5.08 "10
#3
W

0.875 
Vtm, m s-1 0.0447

5.50W  

! 

5.32W
0.125  

Z, mm6 m-3 4 1.27
2.46 10 W!  

! 

2.04 "10
4
W

1.75  
 

 
Fig. 4: As in Fig. 3 except for evaporation rate for a 
unit vapor saturation deficit (Re), accretion rate (Rc) for 
a unit cloud water content, and mass-weighted terminal 
velocity (Vtm)  
DSD models.  
 
 Figure 4 compares the terms for the microphysical 
processes estimated from W using the diagnostic-N0 
DSD model with those from the fixed-N0 M-P DSD 
model.  Direct calculations from the observed DSD data 
and those fitted with the exponential model with N0 as 
one of the two free parameters are also shown for refer-
ence.  The results may appear to be close to each other 
in the semi-logarithm plots but actually, the fixed-N0 
model overestimates the evaporation rate for stratiform 
rain by about a factor of five and underestimates that for 
strong convection. This might be the reason that the 
parameterization coefficients in the Kessler scheme are 
sometimes reduced by a half and more in order to obtain 
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a better match of modeling results with observations 
(e.g., Sun and Crook 1997). The diagnostic-N0 model 
therefore characterizes rain evaporation, accretion and 
rainfall processes more accurately than the fixed-N0 
model for both heavy and light rainfall. This is because 
by introducing the dependency of N0 on W based on 
observations, raindrop number concentration and total 
surface area of rain drops are better represented, leading 
to a better estimation of evaporation and accretion rates. 

5. Summary and Discussions 
 
 In this paper, we present a way of diagnosing the 
intercept parameter N0 of the exponential distribution 
and apply the diagnostic-N0 DSD model to improving 
warm rain microphysical parameterization. The diagnos-
tic relation is derived from a relation between two DSD 
moments that are estimated from 2D video distrometer 
data.  The DSD data were collected in Oklahoma during 
the summer seasons of 2005 and 2006, which should be 
representative for rains in the central Great Plains re-
gion. The N0 – W relation is used to improve the Kessler 
parameterization scheme of warm rain microphysics, 
and can be used in schemes containing ice-phases also 
(e.g., Lin et al. 1983; Hong et al. 2004).  
 It has been shown that the diagnostic-N0 model 
better characterizes natural rain DSDs, including the 
physical properties (e.g., Nt, and D0) and microphysical 
processes.   For a given water content, the diagnostic-N0 
DSD model represents the total number concentration, 
median volume diameter, reflectivity factor, evaporation 
rate and accretion rate much more accurately than the M 
– P model with a fixed N0. Compared with the M-P 
model-based Kessler scheme, the modified parameter-
ization scheme with a diagnostic N0 has the following 
advantages: (i) it leads to less (more) evaporation for 
light (heavy) rain and therefore can preserve stratiform 
rain better in numerical models, and (ii) it yields a larger 
(smaller) reflectivity factor for light (heavy) rain, having 
the potential of yielding a better agreement between 
model predicted and radar observed reflectivities in a 
similar way as the simplified constrained gamma model. 
Realistic simulation of reflectivity is important for as-
similating radar reflectivity data into NWP models. 
 It is noted that the diagnostic N0 – W relation ob-
tained in this paper is based on a specific set of dis-
drometer data in the summer season of a specific climate 
region. While the methodology developed in this paper 
is general, the coefficients in the relation may need to be 
tuned to better fit specific regions and/or seasons or spe-
cific rain types. The improved parameterization based 
on the diagnostic-N0 model is now being tested within 
the Advanced Regional Prediction System (ARPS, Xue 

et al. 2003) to examine its impact on precipitation fore-
cast; the results will be presented in a future paper. 
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