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1. INTRODUCTION 
 
 Four-dimensional variational (4DVar) and 
ensemble Kalman filter (EnKF) are two kinds of 
advanced data assimilation techniques. Lorenc (2003) 
reviewed EnKF in comparison with 4DVar, and 
suggested that a hybrid method may be attractive for 
mesoscale NWP systems. Previously, a hybrid EnKF-
3DVar scheme was proposed by Hamill and Snyder 
(2000). Recently, a more sophisticated hybrid approach 
that combines EnKF and 3DVar, called maximum 
likelihood ensemble filter, was elaborated by Zupanski 
(2005). Inspired by these previous studies, this study is 
intended to develop a new ensemble-based hybrid 
approach that is relatively simple and yet practically 
effective in reducing problems caused by model bias 
errors. 
 The hybrid approach considered in this paper is an 
ensemble-based 4DVar, called En4DVar. This 
approach extracts the leading singular vectors from an 
ensemble of 4D perturbation solutions produced by the 
model, and then a linear combination of the extracted 
singular vectors is used to fit 4D innovation (observation 
minus background) data and thus to produce an 
incremental analysis in each assimilation cycle. The 
involved least-squares fitting is similar to that in 4DVar, 
but the leading singular vectors are used in place of the 
Green’s functions (or represented solutions), so the 
fitting is computationally much more efficient than that 
in 4DVar. In the costfunction used for the fitting, the 
background error covariance matrix is constructed 
implicitly by the perturbation solutions (through their 
representative singular vectors). This is somewhat 
similar to that in EnKF, but the perturbation solutions 
are not updated through analysis into the next cycle so 
that the analysis is simpler and much more efficient 
than in EnKF. The potential merits of the method are 
demonstrated by three sets of observing system 
simulation experiments performed with a shallow-water 
equation model. 
 
2. THE METHOD 

In En4DVar the analysis increment, ∆ua, is a 4D 
vector in a time window and is obtained through the 
minimization of the following cost function 

 J = ßTß + [H∆ua - ∆y]T O-1[H∆ua - ∆y]     (1) 
where H denotes the observation operator，∆y = y – 
Hub is the observation innovation with respect to the 
background field ub at the each time level in a time 
window，y is the observation, O is the observation 
error covariance matrix, and the analysis increment with 
respect to the background field，△ua，is expressed by 
a truncated expansion of the singular vectors to the p-th 
order, that is,  

  ∆ua = Σ
k=1

p
bkßk = Bß                           (2) 

where ß = (ß1, ß2,  … ßp)T is the vector composed of 
the coefficients (that is, the control variables for the 
minimization) and B = (b1, b2,  …bp) is orthogonal 
matrices composed of the leading p right singular 
vectors of a matrices A.  Each data field (that is, a 
column vector in A) is given by a difference field 
sampled from perturbed model integration (with respect 
to the background run) on a 4D grid over the analysis 
time window centered at the ending time of the current 
assimilation cycle. The background integration is 
initialized from the starting time of the current 
assimilation cycle (which is also the ending time of the 
previous data assimilation cycle) without perturbing the 
initial condition, while the perturbed integration is 
initialized with a random perturbation field added to the 
initial condition. For simplicity, we assume that the 
analysis grid has the same Nt time levels as the 
observations.  
 Denote by τ the length of the analysis time window 
and by T the time length of each data assimilation cycle.  
The analysis time window for the n-th cycle is then 
between nT - τ/2 ≤ t ≤ nT + τ/2. By using the 
formulations in (1)-(2), the analysis can be performed 
over the analysis time window centered at the ending 
time of each assimilation cycle through the following 
three steps:  
I. Integrate the model by using the initial condition 

provided by the analysis at the ending time of the 
previous cycle to produce the background field 
over the analysis time window centered at the 
ending time of the current assimilation cycle. 



                                                    

2 

Generate M random perturbation fields by using 
the Monte Carlo method, and filter short wave 
noises spatially between neighbored grid points 
from these random fields. Add each filtered field to 
the initial condition and integrate the model to 
produce a perturbed 4D field over the analysis time 
window. Obtain M difference fields by subtracting 
the background field from each of the M perturbed 
field. Rescale the difference fields based on the 
estimated background error standard deviations, 
and perform the SVD to extract the singular vectors 
from the M rescaled difference fields. 

II.  Select the first p singular vectors so that the 

cumulative sum of relative energies Σ
k=1

p
Ek reaches 

a threshold value of 0.95. Use the selected first p 
basis vectors for the truncated expressions of the 
analysis increment field in (2). Use the least-
squares method to compute the coefficients ßk that 
minimize the cost-function in (1).  

III. Substitute the computed coefficients into (2) to 
obtain the analysis increment field and then add it 
with the background field to obtain the analysis 
field. 

  
3. PREDICTION MODEL AND EXPERIMENT SETUP 
3.1. Shallow-water Equation Model  
 
 To test the proposed method, observing system 
simulation experiments (OSSEs) are designed with a 
two-dimensional shallow-water equation model. The 
shallow water equations are formulated in the f-plane by  
 
 ∂u/∂t = -u∂u/∂x - v∂u/∂y + fv - g∂h/∂x               (3a) 
∂v/∂t = -u∂v/∂x - v∂v/∂y - fu - g∂h/∂y                 (3b) 
 ∂h/∂t = -u∂(h - hs)/∂x - v∂(h - hs)/∂y  

- (H + h - hs)(∂u/∂x + ∂v/∂y)                 (3c) 
 
Here, f = 7.272x10-5 s-1 is the Coriolis parameter at 30o 
N; H = 3000 m is the basic-state depth; 
 
 hs = h0sin(4πx/D)[sin(πy/D)]2  (3d) 
 
is the terrain height; D = 44d is the length of one side of 
the model domain; and d = ∆x = ∆y = 300 km is the grid 
spacing. The maximum terrain height is set to h0 = 250 
m for the “true” model and to h0 = 0 for the imperfect 
model in the OSSEs. The model domain is a square 
with periodic boundary conditions at x, y = 0 and D.  
 The "true" state is produced by integrating the 
“true” model (h0 = 250 m) with the following 
geostrophically balanced conditions at the very 
beginning of the integration (48 hours before the 
starting time of the first data assimilation cycle): 
 
 h = 360[sin(πy/D)]2 +120sin(2πx/D) sin(2πy/D),   
 u = - f--1g∂h/∂y and  v = f--1g∂h/∂x  at t = -48 hours.                                     
                                                                       (4) 
 
The model-produced "true" fields at t = 0 (after 48 hour 
integration to the starting time of the first assimilation 

cycle) are plotted in Fig. 1a. The "observations" are 
generated every 3 hours by adding random noises to 
the above model-produced "true" fields at sparsely and 
randomly selected grid points and the details will be 
described later. 
 
3.2. Experiment Set-up 
 
 In all the OSSEs, the imperfect background state is 
produced by integrating the imperfect model (with h0 = 0) 
from t = -48 hours [with the geostrophically balanced 
condition provided by (4)] to t = 0. In particular, the 
spatially averaged rms errors are 22.7 m, 1.50 and 2.64 
m s-1 for the h-, u- and v-fields, respectively. 
 In each OSSE, the above imperfect initial state (at t 
= 0) is used to initialize the model and the model is 
integrated from t = 0 to t = T +τ/2 to produce the 4D 
background field. By adding perturbations to the above 
imperfect initial state, the same model is integrated from 
t = 0 to t = T +τ/2 to produce the perturbed 4D fields 
over the same time window in the first assimilation cycle. 
By using the background field and perturbed 4D fields, 
the incremental analysis is then performed (through the 
three steps described in section 2), and the analyzed 
field is used to update the background state at t = T (the 
ending time of the first cycle). After the first assimilation 
cycle, the model is integrated from t = T to t = 2T + τ/2 
for the next assimilation cycle, and so on so forth. In 
each experiment, the procedure goes through 10 cycles.  
 In all the OSSEs, the time length of the data 
assimilation cycle is set to T = 12 hours. However, the 
length of the analysis time window can vary as it is 
given by τ = (Nt -1)∆ τ, where Nt is the number of 
observation time levels covered by each analysis time 
window and ∆τ = 3 hours is the observation time 
interval. The background fields are saved every 3 hours 
at the same time levels as the observations over each 
analysis time window. Each perturbed integration is 
initialized by superimposing a random field to the 
updated background state at the starting time of each 
cycle. The ensemble size is M = 150 and the truncation 
number for the expansion in (2) is p = 75 in OSSE-1 
and OSSE-2 described below.  
 The OSSE-1 is designed to examine the 
robustness of the method, especially when the model is 
imperfect. For this purpose, two experiments are 
performed: one uses the perfect model (with h0 = 250 m) 
and the other uses the imperfect mode (with h0 = 0). 
Both experiments use five time levels of observations 
over each analysis time window, so Nt = 5 and the 
length of analysis time window is  τ = (Nt -1)∆ τ = 12 
hours. Simulated observations are available in both the 
height and wind fields on a coarse grid and spaced 
every 3d = 900 km in the x- and y-directions. The 
observation errors are uncorrelated between different 
variables and different points in space and time. The 
observation error standard deviations are 12 m for h 
and 1.2 ms-1 for u and v.  
 OSSE-2 is designed to examine the robustness of 
the method with respect to incomplete observations. 
For this purpose, the method is applied to three types of 
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observations: type-1 is the same as in OSSE-1; type-2 
is the same as type-1 but restricted to height only; and 
type-3 is the same as type-1 but restricted to wind only. 
With each type of observations, the 4D analysis is 
performed in each assimilation cycle in the same way 
as in OSSE-1.  
 OSSE-3 is designed to examine the sensitivities of 
the method to the truncation number p, observation 
error standard deviations, observation density and 
length of the analysis time window. It contains five 
experiments (Expts. 3.1-3.5).  
 
4. RESULTS AND DISUSSIONS 
4.1. Results of OSSE-1 
 
 The spatially averaged rms errors computed at 
each time level over the last analysis time window (that 
is, the 10th cycle) are used to evaluate the analysis 
accuracy. The results are listed in Table 1, where σh 
and σv denote the rms errors for the analyzed height h 
and wind v = (u, v) fields, respectively, As shown, the 
analyzed wind fields have nearly the same rms errors at 
the five different time levels. For the height fields, the 
differences at the five different time levels are not big 
too. This feature is seen in all the OSSEs, so we will 
only examine the results at the middle time level in the 
subsequent OSSEs.  
 
Table 1. Spatially averaged rms errors, denoted by σh andσv 
for the height h and wind v = (u, v) fields, respectively, 
produced by En4DVar at the five time levels of the last (10th) 
cycle (from t = 108 to 120 hours) in OSSE-1. 
Time level of the 
last cycle 

-2∆τ  -∆τ   0  +∆τ +2∆τ

Perfect model      
σh (m) 4.32 5.03 4.85 5.67 4.57
σv (m s-1) 0.58 0.57 0.57 0.57 0.57

Imperfect model      
σh (m) 7.45 8.65 8.19 9.67 8.55
σv (m s-1) 0.88 0.89 0.93 0.92 0.88

 
The resuslts in Table 1 also show that when the 

model is imperfect, the rms errors increase significantly 
(about 60% compared with the perfect-model results). 
The assimilation, however, still converges rapidly 
(within 10 cycles) as shown by the thick curves in Fig. 1 
for imperfect-model case. In particular, when the model 
is imperfect, the analysis can still reduce the rms errors 
effectively in all the three (h, u and v) fields in each 
assimilation cycle. This leads to the convergence of the 
assimilation in spite of the vigorous growths of the 
forecast rms errors (thick curves) between every two 
adjacent analyses (from one cycle to the next cycle) 
caused by the model error. Thus, the method is quite 
robust and can work well for the imperfect model case, 
although the overall error reductions through the 10 
cycles for the imperfect-model case are not as large as 
for the perfect-model case (Fig.1). 
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Fig. 1. Spatially averaged height rms errors (a) and wind rms 
errors (b) plotted as functions of assimilation time for the 
analyses obtained in OSSE-1 with the perfect model (thin 
curves) and imperfect model (thick curves). The drop of the 
error curve at each analysis time (every 12 hours) corresponds 
the error reduction made by the analysis. 
 
4.2. Results of OSSE-2 
 The results of OSSE-2 are shown in the first 
column of Table 2 for the imperfect-model case. As 
shown, when observations are reduced from type-1 to 
type-2, the rms errors are increased from 8.19 to 10.47 
m for the height analysis and from 0.93 to 1.36 m s-1 for 
the wind analysis at the time of the last update (t = 120 
hours). Here, because the wind information is removed 
from the type-2 observations, the rms error is increased 
more (46.2%) in the wind analysis than that (27.8%) in 
the height analysis. Also as shown in Table 2 for the 
imperfect-model case, when observations are reduced 
from type-1 to type-3, the rms errors are increased from 
8.19 to 9.82 m for the height analysis and 0.93 to 0.99 
m s-1 for the wind analysis. Because the height 
information is removed from the type-3 observations, 
the rms error is increased more (19.9%) in the height 
analysis than that (6.45%) in the wind analysis. Note 
that the type-3 observations cover two component fields 
(for u and v) but the type-2 observations cover only one 
component field (for h). This explains why the rms 
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errors for the analysis with the type-3 observations are 
smaller than those with the type-2 observations. 
 When observations are reduced to type-2 (or type 
3) and thus restricted to the height (or wind) field only, 
the En4DVar assimilation still converges rapidly (not 
shown but similar to that in Fig. 1). This implies that 
when the singular vectors are extracted from the 
ensemble of 4D difference fields sampled at multiple 
time levels (as described in section 2), the height-wind 
cross-correlation can be well represented in the 
background error covariance matrix constructed by the 
singular vectors not only for the perfect-model case but 
also for the imperfect-model case.  
 Note that an ensemble of 3D difference fields can 
be sampled at a single time level in each cycle. In this 
case, the analysis time window  = (　 Nt - 1)∆  reduces 　

to zero and the 4D analysis reduces to a 3D analysis. 
With the type-1 observations, this 3D analysis can be 
nearly as accurate as the 4D analysis. With the type-2 
or type-3 observations, however, the 3D analysis 
becomes less or much less accurate than the 4D 
analysis, especially for the imperfect-model case. In the 
latter case, the 3D analysis even tends to diverge and 
thus cause the subsequent forecast to deviate rapidly 
from the true state (not shown). This implies that the 
background error covariance matrix is poorly 
constructed in the 3D analysis for the imperfect-model 
case. Because of this, the 3D analysis is not considered 
in this study. 
 
4.3. Comparisons with EnKF and EnSRF 

In this subsection, experiments are performed with 
two existing EnKF algorithms: (i) the efficient non-serial 
EnKF algorithm of Evensen (2003), and (ii) the serial 
algorithm of ensemble square root filter (EnSRF) of 
Whitaker and Hamill (2002). These two algorithms are 
denoted by EnKF-p and EnSRF-p, repectively, for the 
perfect-model case, but denoted by EnKF-ip0 (EnKF-
ip1) and EnSRF-ip0 (or EnSRF-ip1), respectively, for 
the imperfect-model case with (or without) background 
error covariance inflation. The inflation factor is tuned to 
about 1.05 to optimize the analyses of EnKF-ip1 and 
EnSRF-ip1 for the imperfect-model case. In all these 
experiments, the ensemble size is set to be the same 
(M = 150) as in En4DVar. 

 
Table 2. As in the last rows (imperfect-model case) of Table 1 
but for the rms errors produced by En4DVar, En3DVar, 
EnSRF-ip0, EnSRF-ip1 and EnKF-ip1 at the time (t = 120 
hours) of the last update in OSSE-2. 

Method En4D
Var 

EnSR
F-ip0 

EnSR
F-ip1 

EnKF-
ip1 

Type-1 obs (h and v)     
 σh (m)  8.19 21.34 11.40  18.75
σv (m s-1)   0.93 1.98 1.52   2.36

Type-2 obs (h only)     
σh (m)  10.47 17.73 10.50  16.93
σv (m s-1)   1.36 1.79 1.71   3.21

Type-3 obs (v only)     
σh (m)   9.82 25.09 14.40  51.08

　σv (m s-1)  0.99 1.79 1.40   2.44

To filter spurious long-range correlation caused by 
finite ensemble sizes, compactly supported smooth 
isotropic correlation functions (Gaspari and Cohn 1999) 
have been used to localize the EnKF computed 
covariance (Houtekamer and Mitchell 2001; Whitaker 
and Hamill 2002). Such a localization is convenient for 
the EnSRF but not for the efficient non-serial EnKF 
algorithm of Evensen (2003). Thus, the background 
error covariance is not localized in EnKF-p, EnKF-ip0 
and EnKF-ip1. The covariance localization radius is 
tuned to 3d (= 3∆x = 3∆y = 900 km) to optimize the 
analyses of EnSRF-p, EnSRF-ip0 and EnSRF-ip1.  
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Fig. 2. Height rms errors (a) and wind rms errors (b) plotted 

as functions of assimilation time for the analyses performed 
with type-1 observations by different algorithms (with six 
different settings): EnSRF-ip0 (curve-1 for the imperfect-model 
case without inflation), EnSRF-ip1 (curve-2 for the imperfect-
model case with inflation), EnKF-ip1 (curve-3 for the imperfect-
model case with inflation), EnSRF-p (curve-4 for the perfect-
model case), and EnKF-p (curve-5 for the perfect model case). 
The drop at each analysis time (every 3 hours) corresponds 
the error reduction made by the analysis. 

 
The above algorithms (with six different settings) are 

tested with the same type-1 observations as in OSSE-1. 
As the observations are available every 3 hours, the 
assimilation is cycled here every 3 hour. The rms errors 
are plotted in Fig. 2. As shown, for the perfect-model 
case, EnSRF-p (curve-4) performs better but EnKF-p  
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Table 3. As in Table 2 but for rms errors produced by En4DVar with different settings of the truncation number p (Expts. 3.1 and 3.2), 
observation errors (Expt. 3.3), observation density (Expt. 3.4), and analysis time window (Expt. 3.5) in OSSE-3. The control 
experiment (first column) is the same as that in the first column of Table 2. 
 

 Expt. Control 
(p = 75) 

 #3.1  
 p = 50 

 #3.2  
p = 100 

 #3.3  
obs error 
×1.5 

 #3.4  
obs spacing 
= 5d 

 #3.5  
window 
= 6 h 

　h (m) 8.19 8.96 6.60  9.00  12.28  8.28 Type-1 obs  
(h and v) 　v (m s-1)  0.93 1.19 0.85 1.03  1.23  0.92 

　h (m) 10.47 12.37 9.51 11.66 16.24  9.66 Type-2 obs  
(h only) 　v (m s-1)  1.36  1.61 1.27 1.50  1.66  1.35 

 
(curve-5) performs worse than En4DVar (thin curves in 
Fig. 1). For the imperfect-model case, the algorithms 
(with four different settings) all perform worse than 
En4DVar (thick curves in Fig. 1). Among the four, 
EnKF-ip0 performs worst (not shown) and EnSRF-ip1 
performs best. With the background error covariance 
properly inflated, the rms errors become smaller in 
EnSRF-ip1 than in EnSRF-ip0, but the errors still 
increase with assimilation time at nearly the same rate 
as in EnSRF-ip0 (compare curve-2 with curve-1 in Fig. 
2). Thus, even for the best performer (that is, EnSRF-
ip1), the assimilation still does not converge (see curve-
2 in Fig. 2).  

The EnKF and EnSRF algorithms (with six different 
settings) are also tested with the type-2 and type-3 
observations (as in OSSE-2). The results exhibit 
basically the same features as obtained above with the 
type-1 observations, except that the rms errors become 
even larger and increase more rapidly with the 
assimilation cycle for the imperfect-model case (not 
shown). Thus, En4DVar still performs substantially 
better than EnSRF and EnKF for the imperfect-model 
case. 

The rms errors for the analyses produced by 
EnSRF-ip0, EnSRF-ip1 and EnKF-ip1 are listed in the 
last three columns of Table 2 in comparison with those 
produced by En4DVar (first column) in OSSE-2. The 
listed results show again that En4DVar performs better 
than EnKF and EnSRF for the imperfect-model case. 
Note that the rms errors are listed in Table 2 for the 
analyses at t = 120 hours, while the errors keep 
increasing with time for the analyses produced by 
EnSRF-ip0, EnSRF-ip1 and EnKF-ip1. Thus, En4DVar 
is more robust than EnSRF and EnKF for the imperfect-
model case. 

EnKF or EnSRF computes the background mean and 
covariance approximately from an ensemble of model 
solutions (3D fields) at the analysis time. The computed 
back background mean and covariance can become 
poor or even invalid representations of the true mean 
and covariance when the model contains significant 
errors including biases. The situation can become 
increasingly worse as the ensemble is cycled but not  

 
adequately corrected by the analysis in each cycle. This 
explains why the assimilation does not converge in 
EnSRF-ip1 and EnKF-ip1 even though the covariance 
is optimally inflated (see curve-2 and curve-3 in Fig. 2). 

 
4.4. Results of OSSE-3 and Sensitivities of En4DVar 
 

In OSSE-3, five experiments (Expts. 3.1-3.5) are 
designed to test the sensitivities of En4DVar to the 
truncation number p, observation error standard 
deviations, observation density and length of analysis 
time window. The control experiment is the same as in 
OSSE-2 for the imperfect-model case. The truncation 
number p is decreased from p = 75 to 50 (with Σ

k = 1

p Ek 

decreased from 0.956 to 0.922) in Expt. 3.1 but p is 
increased to 100 (with Σ

k = 1

p Ek increased to 0.976) in Expt. 

3.2. The observation error standard deviations (12 m for 
h and 1.2 m s-1 for u and v) are increased by 50% in 
Expt.  3.3. The observation spacing is increased from 
every 3d (= 900 km) to every 5d = (1500 km) in the x- 
and y-directions in Expt. 3.4. The analysis time window 
is decreased from 12 hours to 6 hours in Expt. 3.5.  

The results for the control experiment are listed in 
the first column of Table 3 and this column is identical 
to the first column of Table 2. The results listed for 
Expts. 3.1 and 3.2 in Table 3 indicate that the analysis 
accuracy is not sensitive moderately to the truncation 
number as p ≥ 75 but becomes moderately sensitive as 
p decreases below 75. Although the analysis can be 
improved significantly as p is increased from 75 to 100, 

The results of Expts. 3.3 and 3.4 indicate that the 
analysis accuracy is not very sensitive to observation 
error but relatively sensitive to observation density. 
From the results of Expt. 3.5, we can see that the 
analysis accuracy does not change much when the 
analysis time window is reduced from 12 to 6 hours. For 
the perfect-modal case, all the rms errors listed in Table 
3 are reduced and so are their reflected sensitivities. 
The qualitative sensitivity features obtained above for 
the imperfect-modal case, however, remain valid for the 
perfect-modal case. 

 
5. SUMMARY AND CONCLUSIONS 
 
 In En4DVar method proposed in this paper, the 
incremental analysis in each assimilation cycle is 
produced by fitting a linear combination of the leading 
singular vectors extracted from an ensemble of 4D 
perturbation solutions to 4D innovation data 
(observation minus background). In the costfunction 
used for the fitting, the background error covariance 



                                                    

6 

matrix is constructed implicitly by the perturbation 
solutions (through their representative singular vectors). 
The robustness and potential merits of the method are 
demonstrated by three sets of observing system 
simulation experiments performed with a two-
dimensional shallow water equation model. The main 
results are summarized as follows: 
(i) The method is robust even when the model contains 
a significant bias error.  
(ii) The method is also robust with respect to incomplete 
observations (restricted to either height only or wind 
only).  
(iii) The method is not very sensitive to the SVD 
truncation as long as the truncation number is not small 

(with Σ
k=1

p
Ek ensured to be larger than 0.95). The method 

is moderately sensitive to observation density but not 
sensitive to the reduction of the analysis time window 
(from 12 to 6 hours) even for the imperfect-model case.  
 Because only the mean (rather than the entire 
ensemble of perturbation solutions) is updated by the 
analysis into the next cycle, the proposed En4DVar is 
less accurate than the ensemble square root filter 
(EnSRF) of Whitaker and Hamill (2002) for the perfect-
model case although it is more accurate than EnKF 
without localization (see Fig. 2). For the imperfect-
model case, the proposed method still converges 
rapidly (see Fig. 1) but EnKF and EnSRF do not 
converge (see Fig. 2). The results suggest that if the 
model is imperfect and contains significant biases, then 
continuously using the same updated ensemble may 
accumulate of model biases and thus may not be a 
good strategy. The advantages of 4D analyses over 3D 
analyses are also evidenced by deteriorated 
performances (not shown in this paper) caused by 
degrading the 4D analyses in En4DVar into 3D 
analyses (as discussed at the end of section 4.2). 
 The results obtained in this paper are encouraging. 
In particular, the proposed En4DVar is shown to be able 
to alleviate some problems caused by model errors 
(especially biases) while these problems can be 
notoriously difficult for the advanced techniques. This 
may imply that the subspace spanned by the leading 
singular vectors can cover the dominant uncertainties in 
the model solutions caused by errors not only in the 
initial conditions but also in model equations. As the 
subspace spanned by the leading singular vectors is 

compact and yet can still contain the attractors of the 
modeled atmospheric dynamics in the phase space, the 
least-squares fitting used in the method can be very 
efficient and well determined. As explained earlier, 
updating only the mean but not the entire ensemble of 
perturbation solutions at each analysis step of En4DVar 
can make the method less vulnerable to model errors, 
but it may also severely limit the accuracy of the 
method as the model becomes increasingly accurate or 
model error statistics can be adequately estimated. This 
limitation may be reduced if the ensemble perturbation 
solutions are properly rescaled at the end of each 
assimilation cycle and partially re-used in the next cycle 
in a way somewhat similar to the breeding method 
(Toth and Kalnay 1997). Further improvements in this 
direction are under investigation. 
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