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1. Introduction* 

The improvement of short-term rainfall forecast 
using numerical models has been vigorously 
pursued during the last decade. One of the 
approaches to improve rainfall prediction for 
mesoscale and convective-scale is to produce 
initial conditions closer to true fields by 
assimilating radar observations using advanced 
data assimilation techniques. 

 There are three dominant approaches to 
improve model initial conditions using Doppler 
radar volumetric data. They are three- and four-
dimensional variational (3DVar, 4DVar) data 
assimilations, and ensemble Kalman Filter 
(EnKF). The 4DVar technique was first applied to 
radar data assimilation by Sun et al. (1991). In 
recent years, it has been shown that the 
technique is able to retrieve the 3D wind, 
thermodynamic, and microphysical variables and 
improve subsequent precipitation forecasting 
(Sun and Crook 1997, 1998; Sun 2005). The 
EnKF technique is a newer technique and has 
been applied to radar data assimilation (Snyder 
and Zhang 2003, Dowell et al. 2004, and Tong et 
al. 2006). While both the 4DVar and EnKF were 
demonstrated the capability of retrieving the 
unobserved model variables through the use of a 
dynamical model, they are computationally too 
expensive to be applied in real time with a large 
domain.  Xiao et al. (2005,  2007), therefore, 
developed a radar radial velocity and reflectivity 
data assimilation procedure in MM5 3DVar 
system (Barker et al. 2003) and examined its 
capability in two case studies. They showed that 
rainfall forecasts were improved with a 3-hour 
analysis/forecast update cycling system when 
verified against observation. Hu et al. (2006) 
assimilated reflectivity and radial velocity using a 
different procedure based on the 3DVar system 
for the Advanced Regional Prediction System 
(ARPS) in a case study of tornadic thunderstorm 
forecasting.  
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Although the 3DVar technique has been 
shown some success in radar data assimilation 
through a few case studies, there are still a host of 
unresolved questions. One prominent question 
concerns the background error statistics for 
mesoscale applications. In this paper, we want to 
address the question in regard to forecast length 
when ensemble-based forecast are used to 
produce background error statistics. We applied 
random perturbation technique (Barker 2005) in 
Weather Research and Forecasting (WRF) 
3DVar to calculate background error covariance 
for a band-type rainfall event in Mississippi delta 
during 29-30 April 2005. The impact of the error 
statistics produced by 3-, 6-, and 12-hour 
ensemble forecasts were compared on the 
subsequent precipitation forecasts. We then 
used the statistics that produced the best 
forecasts to run several experiments to examine 
the impact of the 3DVar with radar data and 
cycling. This paper is arranged as follows. 
Section 2 describes the ensemble-based 
background error statistics method, its 
characteristics and impact on forecast. Radar 
data pre-processing are described in section 3. 
Section 4 presents the experimental results of 
radar data assimilations and their evaluation in 
the rainfall forecasts. This paper concludes with 
summary in section 5.  

 
2. Ensemble-based background error 

statistics and its characteristics 
We adopted the ensemble-based background 

error statistics method (Fisher 1999) to calculate 
background error covariance for the case. 
Random perturbations were generated in control 
variables of WRF 3DVar and the ensemble 
forecast is produced with the WRF model 
integration. The center of the model domain is 
(33.5oN, 90.0oW) in the state of Mississippi. The 
grid mesh is 350×350×35 with 4 km horizontal 
resolution. The model top is set 50 hPa. The 
control initial condition is interpolated from Eta 
reanalysis data that has about 40 km horizontal 

  



resolution (we will call it the control member 
hereafter). The model integration time step is 24 
seconds.  

 
a. Generation of ensemble initial conditions 

We assume the error in the initial conditions 
can be represented by random perturbation that 
has Gaussian distribution with zero mean and 
unit standard deviation in the control variable 
space of WRF 3DVar. It is incremental 
formulation of control variables (ν ) in a model 
space. The control variables in WRF 3DVar are 
stream function, unbalanced velocity potential, 
unbalanced temperature, pseudo relative 
humidity, and unbalanced surface pressure.  
Background error covariance is described in the 
space of uncorrelated control variables to 
decrease the computational expense of the cost 
function. The horizontal and vertical correlations 
between model variables ( x ) are introduced via 
control variable transform which includes 
recursive filter in the horizontal, empirical 
orthogonal function projection (EOF) in the 
vertical, and some physical balances of 
hydrostatic, geostrophic, and cyclostrophic 
relations (Barker et al. 2003).  

The final analysis increments of model 
variables are three-dimensional, multivariate 
fields with spatial correlations. The 30 ensemble 
initial conditions are generated using different 
random seeds. Each ensemble initial condition is 
constructed by adding the increment field to the 
field of control member. The boundary condition 
with 3-hr interval for each ensemble member is 
updated by perturbed analysis field to prevent an 
ensemble forecast from losing variance as lead 
time increases.  

 
b. Characteristics of background error statistics 

To analyze the characteristics of ensemble-
based background error statistics, we calculated 
the ensemble forecasts from 0000 UTC 30 April 
2005 for the case. Each ensemble forecast 
member integrated 12 hours, and the 
background error statistics were carried out from 
the forecasts at 3, 6, and 12 hours, respectively. 
The background error is defined as the 
perturbation from the ensemble mean.  

Figure 1 shows the correlation between total 
value and the balanced value with stream 
function for temperature (a) and velocity potential 
(b) with respect to forecast time. The mass and 
wind correlation increases as forecast proceeds 
(Figure 1a). It implies that forecast model 
smoothes the smaller scale structures as lead 
time increases. However, the overall magnitude 

of correlations is smaller than 0.2; 80 percent of 
temperature leaves for unbalanced with wind. 
The correlation in velocity potential (Figure 1b) 
varies in levels as well as in time. The correlation 
at 12-hour ensemble forecast has maximum in 
the lower levels, while 6-hour ensemble 
correlations has maximum in the mid-lower levels. 
The correlations from 3-hour ensemble forecasts 
are the smallest among the three ensemble 
forecasts in all levels.  
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Figure 1. Vertical profiles of correlations between 
balanced and total value of temperature (a), velocity 
potential (b) for different forecast times. Triangle, circle, 
and cross stand for 3-, 6-, and 12-hour forecast, 
respectively. 

 
The horizontal scale length of background 

error determines the influence of observations 
and smoothness of each observation. Figure 2 
shows scale lengths of all control variables for 
three different background errors. In general, the 
length scales of all control variables are 
increased along with the increase of the 
ensemble forecast time. Temperature and 
relative humidity (Figure 2c and d) have similar 
length scales; both show the nature of smaller 
scale than wind, i.e. stream function and 
unbalanced velocity potential (Figure 2a and b).  

The magnitude of background error is 
represented by the eigenvalue from the 
background error covariance matrix. The 
background error of unbalanced velocity potential 
is about 40 percent of stream function. The error 
of background temperature is about 3.4 oK for the 
first mode when 12-hour ensemble forecasts are 
used. It is within the range of temperature 
observation error defined by NCEP. The 
temperature errors for 3- and 6- hour forecast are 
out of the observation error range. It suggests 
that temperature observation plays a relatively 
dominant role when 3-hour ensemble forecasts 
are used for the background error statistics. The 
temperature error decreases rapidly after the first 

  



mode. The background errors of relative humidity 
among three ensemble forecasts are not 
significantly different.  
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Figure  2. Horizontal length scales of background error 
for stream function (a), unbalanced velocity potential 
(b), unbalanced temperature (c), and relative humidity 
(d). Symbol notations are the same as those in Figure 1.  

 
3. Radar data processing 

The quality of the observational data plays a 
crucial role in the results of data assimilation. 
There are two main issues for radial velocity 
quality control. Doppler radar observes radial 
velocity within the range of unambiguous velocity. 
The velocity is folded where true wind is greater 
than the unambiguous velocity; it has to be 
unfolded. Radar displacement is not 
homogeneous. It induces not only data void area 
but data overlapped area from several radars in 
the network. Even if one radar is considered, it is 
usually too dense compared with the horizontal 
resolution of numerical models. Data thinning or 
super-observation strategy is necessary.  

There are several stages to process radar data 
before ingesting to WRF 3DVar for this study. 
First, radial spherical coordinates are converted 
to the two-dimensional Cartesian coordinates 
with a 1 km grid interval on each constant-
elevation-angle surface. Second, folded radial 
velocities are unfolded using wind profile, 
extracted from the WRF initial fields, as a 
reference wind. The next stage is to remove 
radial velocities, which are smaller than 0.1 ms-1 
to eliminate ground-clutter contamination. Further 
quality control is achieved by a generalized 
procedure to remove noisy data. In particular, a 
local variance is computed, and any data point 

with a variation of greater than 60.0 m2s-2 is 
removed. A 2-dimensional filter that is based on 
a local least-squares fitting method is then 
applied to remove high frequency features that 
cannot be adequately represented by the model 
grid. The next step is to horizontally interpolate 
the 1 km data to 4 km, which is WRF model grid 
for this study, while still keeping the data on 
constant-elevation-angle surfaces. The standard 
deviation of data, which are involved in the 
interpolation, is used as an observation error in 
the variational analysis. The above processes are 
applied for nine radars separately. The final step 
is to make a super observation data with about 
20 km resolution. If there are several profiles of 
data from different radars in 20×20 km2 area, we 
select one profile with the following criteria in 
order: more data in the vertical, and shorter 
distance from the radar.  

Figure 3 shows the radial velocities before and 
after the quality control procedure for the site 
KNQA on 2.3-degree elevation angle at 00UTC 
30 April 2005. The horizontal resolutions are 1 
and 4 km, respectively. There are folded 
velocities at northeast and southwest edge of the 
data area (Figure 3a). They show strong contrast 
between away and toward wind. The radial winds 
are unfolded as shown in Figure 3b.  

 

 
 
Figure 3. Observed (left) and unfolded (right) radial 
velocities on 2.3 deg elevation angle for NEXRAD 
KNQA at 00 UTC 30 April 2005. 
 
4. Results 

Nine experiments were designed (Table 1) to 
address the three subjects. One is to select the 
proper background error covariance for the 
rainfall events. Experiments BE03, BE06 and 
GTS are conducted mainly for this purpose. The 
experiments CNTL, GTS and RADR are to 
analyze the impact of radar data assimilation on 
the forecasts of the rainfall event, especially for 
the initiation of new convective cells at 06 UTC 
30 April 2005. The experiment RADR_nt is 
designed to compare with RADR in terms of 
impact of radar data thinning. The other three 
experiments with prefix C are designed to assess 

  



the impact of the analysis and forecast cycling. In 
addition to model configuration mentioned in 
section 2, the main model physics used in this 
study include the WRF-Single-Moment 6-class 
graupel scheme (WSM6, Hong and Lim 2006), 

Rapid Radiative Transfer Model (RRTM, Mlawer 
et al, 1997), Dudhia scheme (Dudhia 1989) for 
long and short radiations, and YSU planetary 
boundary layer parameterization scheme (Hong 
et al. 2006). 

 
Table 1. Experimental design. 

Forecast time (UTC) Data 
Experiment 

Background 
error 

time (hours) Start End GTS Radar 
Remarks 

CNTL - 3000 3012 No No  
BE03 3 3000 3012 Yes No  
BE06 6 3000 3012 Yes No  
GTS 12 3000 3012 Yes No  
RADR_nt 12 3000 3012 Yes Yes no thinning
RADR 12 3000 3012 Yes Yes  
C_CNTL 12 2918 3012 No No  
C_GTS 12 2918 3012 Yes No  
C_RADR 12 2918 3012 Yes Yes  

 
a. Impact of different background error covariance 

To determine the most appropriate background 
error covariance for the rainfall event, we carried 
out three experiments BE03, BE06, and GTS with 
12-hour forecast using only conventional 
observations from Global Telecommunication 
System (GTS) in the 3DVar analyses. The 
performance of each background error covariance 
is evaluated by three-hour accumulated rainfall 
verification. Figure 4 shows equitable threat score 
(ETS) and bias from the rainfall forecast of each 
experiment. For lighter rain with threshold of 0.1 
mm (Figure 4a), the background error covariance 
calculated from 12-hour ensemble forecast has 
the highest ETS. Relative large length scale, 
which results in wider influence of observation by 
the background error statistics, could be a reason 
for the highest ETS. Biases of three experiments 
for light rainfall are close to 1, but they all 
increases at later forecast time. 

For heavier rainfall with threshold of 2.5 mm, 
GTS produces better ETSs at all forecast time 
(Figure 4b) except for 9-hour forecast. The biases 
of BE06 and GTS are similar, and both are slightly 
larger than that of BE03. The rainfall verification 
from this study indicates that model needs spin-up 
time to produce heavier rainfall. There is no 
significant superiority of using any one of the 
background error covariance (from 3, 6 or 12 
ensemble forecast) in terms of rainfall verification. 
With the background error statistics from 12-hour 
ensemble forecast, however, the average ETS 
shows a little higher score than using other two. In 
the following experiments we used the 
background error covariance from 12-hour 

ensemble forecast to evaluate the impact of radar 
data assimilation.  
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Figure 4. Equitable threat score (bar) and bias (line with 
symbol) of 3-hour accumulated rainfall for experiments, 
BE03, BE06, and GTS with 0.1 (a) and 2.5 mm (b) 
threshold at 30 April 2005. 

 
b. Impact of radar data assimilation 

The analysis increment at 1000 hPa from the 
experiment GTS is shown in Figure 5a. 
Assimilation of the conventional data increases 
the moisture mainly around the coast of Texas, 
Louisiana, and Mississippi. There is a moisture 
intrusion from the coast, stretching in the cold 
front direction (Figure 5a and c). Temperature 
decreases behind the cold front and increases in 
the warm region. Figure 5b and d are the 

  



differences of wind analysis increments between 
RADR and GTS at 1000 and 850 hPa, 
respectively. Assimilation of radial velocities 
increases not only the southwesterly wind in front 
of the cold front at 1000 hPa, but northwesterly 
wind behind the cold front.   

 
(a)                                 (b) 

 
(c)                                  (d) 

 
 
Figure 5. Analysis increments of temperature (contour, 
interval = 0.4 oK, dashed line stands for negative), 
specific humidity (shaded, unit = g kg-1) and wind vector 
for GTS (left panel), and analysis increment difference 
of RADR from GTS (right panel) at 1000 (upper) and 
850 hPa (lower). The names in the right panel stand for 
radar locations assimilated in the experiment RADR.  

 
Figure 6 shows the 3-hour accumulated 

rainfalls at 06 UTC 30 April 2005. Figure 6a is the 
observation. There are several convective cells 
embedded in the existing rain band associated 
with the cold front. A new storm initiated at 06 
UTC in front of the existing rain band in southern 
Louisiana. It gradually developed into a rain band 
and moved northeastward in later time. The rain 
band in CNTL (Figure 6b) encompasses the storm 
cells and stretches to Texas where the 
observation does not have it. It also does not have 
straight shape; it is kinked around the border of 
Mississippi, Arkansas, and Louisiana. 
Conventional data assimilation (GTS) helps the 
rain band get straight shape at 06 UTC (Figure 
6c). Radial velocity assimilation (RADR) helps the 
generation of the new storm in front of the rain 

band, but it is developed at the southwest of 
Louisiana (Figure 6d).  

 
(a)                                    (b) 

 
(c)                                    (d) 

 
 
Figure 6. 3-hour accumulated rainfall 06 UTC 30 April 
2005 for observation (a), CNTL (b), GTS (c), and 
RADR(d). The two contours are drawn at 0.1 mm and 
2.5 mm. 

 
The ETSs of 3-hour accumulated rainfall for 

experiments CNTL, GTS, and RADR are shown in 
Figure 7 with solid bars. Overall, 3DVar 
experiments that have conventional data and 
radar data assimilations produce better results in 
the rainfall forecasts than that without data 
assimilation (CNTL). For lighter rain (Figure 7a), 
GTS has higher ETS score than RADR for the first 
6 hours, but RADR has better ETS skill than GTS 
after 6 hours. For heavier rainfall (figure 7b), the 
ETS from RADR is higher than GTS at all forecast 
time. Careful examination indicates that the 
improvement of RADR over GTS is mainly due to 
the catch-up of the new storm development 
around 06 UTC. Biases are similar for all 
experiments.  

The thinned radar data (RADR) makes the 
3DVar converge at 31 iterations. As a comparison, 
RADR_nt with original data makes 3DVar 
converge at 71 iterations. The 3DVar minimization 
of RADR is two times faster than RADR_nt. We 
should point out that with the reduced 
computation cost, we still obtained similar results 
in terms of ETS, bias, and horizontal distribution. 
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Figure 7. Equitable threat score (bar) and bias (solid 
line with symbol) of 3-hour accumulated rainfall for 
experiments, CNTL, GTS, and RADR with 0.1 (a) and 
2.5 mm (b) threshold at 30 April 2005. Hatched bar and 
dashed line with symbols stand for equitable threat 
score and bias for experiments, C_CNTL, C_GTS, and 
C_RADR. 

 
c. Impact of analysis and forecast cycling 

Radar data are available from the 18 UTC 29 
April, which is set as the cold start time for the 
3DVAR cycling experiments. The frequency of the 
update cycles is 3 hours. We noticed that every 
cycling experiment increases the biases at 03 
UTC but after that, biases are closer to those of 
no cycling experiments (Figure 7). C_CNTL 
produces worse results than CNTL in general for 
lighter rainfall (Figure 7a) and at 09 UTC for 
heavier rainfall (Figure 7b) in terms of ETS. The 
new storm cell in C_CNTL is developed further 
than that of CNTL. Two systems appear to merge 
together on later forecast time. It is the reason 
that C_CNTL has a higher ETS at 12 UTC than 
that of CNTL (Figure 7b).  

C_GTS also does not produce higher ETS than 
that of GTS for lighter rainfall (Figure 7a), because 
it produces the lighter rainfall in wider area than 
that of GTS. It does not help the initiation of the 
new storm at 06 UTC; however, it produces the 
higher EST than that of GTS for heavier rainfall 
(Figure 7b). It is mainly due to keeping the strong 
convection at the trailing of the existing rain band.  

Radar data cycling (C_RADR) generates the 
new storm, which is closer to the observation than 
RADR in terms of location and the size, even 
though it has narrower shape and a little bit 
northern place than observation. This results in 
the higher ETS than that of C_GTS in the lighter 
rain (Figure 7a). It is not intensified like an 

observation. Radar data cycling intensifies the 
existing rain band at the boarder of Arkansas, 
Louisiana, and Mississippi. The feature is close to 
the observation, however, it does not simulate the 
merge of two systems. 

 
5. Summary and conclusion 

To assess the impact of Doppler radar data 
assimilation on short-term rainfall forecasts, WRF 
3DVar analysis and WRF model forecast systems 
were applied to a convective rain band case in 
Mississippi Delta. The convective rain band 
occurred in association with a cold front on 29-30 
April 2005 in the area.   

The first effort in this study was to find an 
appropriate background error covariance for the 
case using ensemble forecasts. The ensemble 
initial conditions are generated by random 
perturbations in the control variable space using 
WRF 3DVar. Three background error covariance 
were calculated from 3, 6 and 12-hour ensemble 
forecasts initialized at 00 UTC 30 April 2005. 
Background error statistics showed that the 
balances between wind and mass were increased 
with the increase of forecast time. The horizontal 
correlation was also increased. Meanwhile the 
error magnitude of control variables is reduced, 
because the ensemble spread is reduced as 
forecast time increases. The performance of 
background error statistics were estimated based 
on ETS skills of 3-hour accumulated rainfall 
forecast. Although not significantly different, the 
background error covariance using 12-hour 
ensemble forecast produced the best results. This 
indicates that a longer time ensemble forecast 
establishes more balanced background structure, 
which produces better representative of the 
background error covariance.  

The second effort was to evaluate how radar 
data assimilation helps improve the forecast of 
rain band in terms of generation of new storm. 
Radar data assimilation initiates the new storm in 
front of the existing rain band, although it is 
misplaced a little and not as strong as in the 
observation. We also investigated the impact of 
radar data thinning on the rainfall forecast. It is 
indicated that assimilation of the thinned radar 
data resulted in about two times faster converging 
during the 3DVar minimization, while produce 
similar ETS skills compared with the experiment 
without tinning.  

Analysis and forecast cycling from 18 UTC 29 
April 2005 were designed to address the 
importance of more data used in the data cycling 
window. In the series of experiments, radar and 
conventional GTS data are assimilated three 

  



times until 0000 UTC 30 April 2005 with 3-hour 
intervals. Cycling with GTS data does not help to 
enhance the performance of forecast skill of 
lighter rainfall, but it increases the forecast 
performance for heavier rainfall by developing 
strong storms at the trailing of the existing rain 
band. Cycling with radar data initiated new storms 
closer to the observation than that without cycling. 
It also produces better evolution and propagation 
of the storm than non-cycling experiments. The 
ETS skills are therefore enhanced for lighter 
rainfall, especially at the later forecast time. 
However, there is no significant improvement of 
heavier rainfall forecast with only radial velocity 
assimilation. 

Even though radar data assimilation had better 
performance to initiate new storm, there is still a 
main difference from the observation in 
propagations of the main rain band and the new 
storm. We should make more efforts to further 
improve the forecast of the rain band. In addition, 
the capability of Doppler radar data assimilation in 
WRF 3DVAR is under rapid improvement. We will 
include diabatic process related to radar 
reflectivity observation in the system. More 
positive impacts from Doppler radar data 
assimilation are expected in the future. 
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