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Urban activities and pollutant dispersions take place in the atmospheric surface layer, the bottom of the 

atmosphere, whose depth is on the order of several tens or hundreds meters. Characterizing turbulence in the 
surface layer is of great significance in urban air quality research, and has a major role in policy and regulatory 
decision, urban design, and air pollution control. The turbulence kinetic energy (TKE) budget, which associates the 
change of turbulence per unit time to mechanical production, buoyancy production or destruction, turbulent energy 
dissipation, and transport by mean flow, turbulent fluctuations, and pressure fluctuations, finds its applications in both 
empirical and computational approaches. This study utilizes experimental data collected in an open filed in Hanford, 
WA in 2002 to investigate the TKE budget in the surface layer. The TKE budget was normalized and all terms were 
parameterized as functions of a stability parameter z/L, where z is a distance from the ground and L is the Monin-
Obukhov length. The mechanical, buoyancy and dissipation terms, are found to be imbalanced due to a large net 
transport term. This imbalance suggests imperfection of the Monin-Obukhov Similarity Theory (MOST), which is 
widely used as the major parameterization in the surface layer. Modifications on the TKE parameterization derived 
from MOST were attempted and generated good agreement with the experimental data. 
 
1. INTRODUCTION 
 

Since 1960s, Monin-Obukhov similarity theory 
(MOST) [Monin and Obukhov 1954] has been widely 
accepted as the major parameterization in the 
atmospheric surface layer. Based on MOST the 
turbulent kinetic energy (TKE) budget in the 
atmospheric environment has been studied extensively 
for several decades. Although deep understandings 
have been gained from many field campaigns since 
1968 Kansas Experiment [Businger et al. 1971], many 
aspects of the TKE parameterization in the surface layer 
have still remained uncertain, which will be discussed in 
details in Section 2. Descriptions of data analysis from 
Hanford 2002 Field Experiment can be found in Section 
3. The estimate of von Kármán constant is described in 
Section 4. The parameterization of dimensionless TKE 
budget terms is presented in details and compared to 
previous research in Section 5, followed by discussion 
and conclusion in Section 6. 
 
2. BACKGROUND 
 

The Monin-Obukhov length is the primary length 
scale in MOST, and is defined as: 
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where u* is the friction velocity taken from the surface 
kinematic Reynolds shear stress, Θ is the mean 
potential temperature, θ’ is the potential temperature 
fluctuation, g is the gravity constant, and κ is the von 
Kármán constant.  

The stability parameter z/L, where z is the vertical 
coordinate defined as zero at the ground, represents the 
stability under three conditions: unstable when z/L has a 
negative value, neutral when z/L equals zero, and stable 
when z/L is positive.  

The TKE is defined as e = 0.5(σu
2
 + σv
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applying the assumption of zero-subsidence and 
choosing the coordinate system aligned to the wind 
direction, the TKE budget equation will reduced to the 
form of: 
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  (I)         (II)       (III)        (IV)         (V)           (VI)       (VII) 
Where term I presents the local storage of TKE; term II 
is the advection by the mean flow; the buoyancy 
production or destruction, the shear production, and the 
dissipation are given by term III, IV and VII; term V and 
term VI are the transport terms by turbulent velocity 
fluctuations and pressure fluctuation, sometimes simply 
referred to as the turbulent transport and the pressure 
transport. 

The dimensionless form is obtained by normalizing 
the TKE budget by u*

3
/κz: 
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All the dimensionless ‘φ’ functions are functions of 
stability parameter z/L. Stationary assumption gives 

dimensionless local storage φs a zero value. Under 
horizontal homogeneity assumption, dimensionless 

advection φa also goes zero. Dimensionless buoyancy 

production φb is nothing but –z/L by definition. There are 
many proposed forms of dimensionless shear 

production φm [Panofsky et al. 1960, and Swinbank 
1964], out of which the now well-known Businger-Dyer 
relation [Businger et al. 1971, Dyer 1974] has been 
widely used: 
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where γ and δ are constants whose values have been 
determined from many studies. The values of γ include 
15 [Businger et al. 1971, and Oncley et al.1990], 22 
[Wieringa 1980], 28 [Dyer and Bradley 1982], 19 
[Hogstrom 1988], and 22.6 [Frenzen and Vogel 1992]. 
The values of δ include 5 [Webb 1970], 4.7 [Businger et 
al. 1971], 6.9 [Wieringa 1980], 8.1 [Oncley et al. 1990], 
and 5.3 [Hogstrom 1996].  



Carl et al. [1973] proposed a modified form for 
unstable condition, changing the exponent from -1/4 
to -1/3: 
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The value is γ for this -1/3 law include 15 [Carl et al. 
1973], 8 [Gavrilov and Petrov 1981], and 16 [Frenzen 
and Vogel 2001]. 

Dimensionless turbulent dissipation φε = εκz/u*
3
. 

Wyngaard and Cote [1971] proposed a parameterization 
as: 
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The value of β was initially found to be 0.5, and 
later reported to be 0.75 by Caughey and Wyngaard 
[1979]. Other investigators have reported good 
agreement with 0.5 value over limited range of instability 
[Champagne et al. 1977, McBean and Elliot 1975, 
Frenzen 1983]. 

Less is known about the two transport terms. Under 
neutral conditions, MOST predicts the two transport 
terms to be zero, and the local TKE shear production 
will be balanced by dissipation. However, this has been 
strongly challenged by many atmospheric data [McBean 
and Elliot 1975, Deacon 1988, Hogstrom 1996, etc.]. 

Note that while the turbulent transport term can be 
calculated directly from the measurements, the 
measurements of pressure transport term present 
difficulty, which arises from the fact that the pressure 
fluctuations are very small and fast response 
measurements are needed. Direct measurements of 
pressure transport term were made by McBean and 
Elliot [1975], Maitani and Seo [1985], Schols and 
Wartena [1986], Oncley et al. [1995], and Wilczak et al. 
[1995], but there has been a lot of uncertainty. 
 
3. EXPERIMENTAL DATA 

 
Hanford 2002 Field Experiment took place in an 

open field with flat terrain and bush and grass surface in 
Hanford, WA in the spring of 2002. Five sonic 
anemometers were deployed at five different heights: 
3.96, 7.62, 10.97, 15.24, and 22.86 m above the ground 
level. The sampling frequency was 10Hz. 

There are a total 6 days in May 2002 which were 
examined and presented in this work. Raw data were 
filtered to remove large scale motion’s influence, and 
then averaged into 5 minute and 1 hour blocks. 5 minute 
averaged data were used to find von Kármán constant 
under near neutral condition (refer to Section 4), while 1 
hour averaged data were used to calculate the TKE 
budget (refer to Section 5). The vertical profiles of mean 

velocity and flux ew'  were fitted toward second order 

polynomials when estimating the vertical gradient. The 
turbulent dissipation ε was estimated from the 
Kolmogorov inertial subrange in the spectra by 
assuming horizontal homogeneity. Bin averaging was 

applied when parameterizing the dimensionless TKE 
terms to reduce scatter. 

 
4. VON KÁRMÁN CONSTANT 

 
After 1960s, there have been extensive 

atmospheric data showing that von Kármán constant κ 
is actually neither universal nor constant but depends on 
different surface types, ranging from 0.32 to 0.43 in 
value [e.g. Hogstrom 1996 Table 1, Frenzen and Vogel 
2001]. There were also many researchers [e.g. Purtell  
et al. 1981, and Hogstrom 1996] believed that von 
Kármán constant should be a constant about 0.40 
regardless of surface, declaring the deviations from the 
classical value were due to inadequate measuring 
techniques.  

To test Hanford data against the above 
contradictive conclusions, 5 minute averaged near 
neutral condition data were utilized to determine the von 
Kármán constant. Stability (z/L) between -0.002 and 
0.002 was set as the cutoff for near neutral data. The 
mean wind speed U was normalized by friction velocity 
u*, and κ was determined from linear fitting after the 
logarithmic profile: 
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Figure 1 shows the linear fitting of von Kármán 
constant in Hanford Experiment. The roughness length 
z0 was found to be 0.06 m, which falls in the reasonable 
range for grass and bush surface. We determined κ to 
be 0.385. However sensitivity in estimating this constant 
left us unable to verify Purtell’s hypothesis [1998].  

 

 
Figure 1- Logarithmic profile fitting for von  Kármán constant 

and roughness height 

 
 
5. DIMENSIONLESS TKE BUDGET 

 
The TKE budget terms and their corresponding 

dimensionless forms were calculated from the 1 hour 
averaged data using equations (3) and (4). All terms in 
the dimensionless TKE budget were obtained except for 
the pressure transport and the advection. We combined 
these two unknown terms into one residual term, which 
can be determined under stationary assumption. Figure 



2 presents the TKE budget terms from one sonic 
anemometer on May 24, 2002, showing the local 
storage of TKE is negligible compared with other terms. 
This actually happened consistently in all examined data, 
so we think the stationary assumption is valid. Figure 2 
also indicates that contradictory to MOST, the three 
local TKE terms – the buoyancy production, the shear 
production, and the dissipation do not balance each 
other due to a non-zero net transport. The local 
imbalance of TKE will be presented from all examined 
data in Figure 5 showing the parameterized 
dimensionless TKE budget, which will be discussed in 
Subsection 5.4. Parameterization of the shear 
production, the turbulent dissipation, and the turbulent 
transport will be discussed in Subsections 5.1 through 
5.3. 
 

 
Figure 2 - The TKE budget on May 22, 2002 

 
 
5.1 Dimensionless shear production 
 

Dimensionless shear production was examined 
against Businger-Dyer relation, i.e., equations (5) and (6) 
with original coefficients. The new coefficients were also 
obtained by least square fitting as: under stable 
condition δ = 5.0 and under unstable condition γ = 16 for 
the -1/4 law, and γ = 9 for the -1/3 law, which are 
comparable to existing literatures. Figure 3 shows the 
bin-averaged data of dimensionless shear production 
and the parameterizations with new coefficients. Under 
unstable condition, the -1/3 law generates very similar 
results as the -1/4 law with the new coefficients, and 
both agree with the experimental data very well. 
Unstable data near neutral condition presents most 
scatter, which suggests the difficulty in obtaining very 
accurate estimates for spatial gradient near neutral 
condition due to the fact that sonic anemometer data 
come from a few discrete heights. The errors in 
estimating spatial gradients with a few sensors have 
been so large that we think a measuring technique with 
higher accuracy and higher spatial resolution is needed. 

 
Figure 3 - Dimensionless shear production parameterization 

 
 
5.2 Dimensionless turbulent dissipation 
 

Dimensionless dissipation was tested against 
Wyngaard relation as in the equation (7). As expected, 
the formula failed to predict the data due to the 
imbalance. So we slightly modified the formula by 
introducing an imbalance coefficient ψ for all three 
stability conditions: 
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From the near neutral data, we found the imbalance 
coefficient ψ to be 0.44. The best fitting generated α=2.1, 
and β=0.45, which are close to Wyngaard’s original 
coefficients. We also tested dissipation term against 
Frenzen’s [Frenzen and Vogel, 2001] formula as: 
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After replacing their imbalance coefficient f1 value 
0.84 with ours 0.48, we found f2=0.7, which is very close 
to their original value 0.6. These two parameterizations 
with new coefficients along with the experimental data 
can be found in Figure 4. Note that Frenzen’s formula 
gives very different prediction from Wyngaard relation 
especially for very stable case. We believed this is 
because he proposed this formula based on a much 
narrower range of stability than ours. It is also noted that 
two formulas give very different transition near the 
neutral condition.  

The result is interesting and enlightening: the 
previous formulas work pretty effectively if the right 
imbalance coefficient is determined. However the most 
intriguing question that why the imbalance differs in 
different field measurements still lacks a satisfactory 
answer. 

 



 
Figure 4 - Dimensionless turbulent dissipation parameterization 
 

 
5.3 Dimensionless turbulent transport 
 

Wyngaard and Cote [1971] proposed that 
dimensionless turbulent transport balances the 

buoyancy production under unstable condition, i.e., φt = 
z/L for z/L < 0. Our data were tested against this z/L law, 
as well as the modified linear form: 

0/, <







+= Lz

L

z
batφ                  (11) 

We also extended this formula to stable condition. 
Least square fitting generates the coefficients to be a = 
0.36, b = -0.15. Figure 5 shows the observed 
dimensionless turbulent transport and how they 
compare with the two parameterizations. The z/L law 
fails apparently, which indicates the inability of turbulent 
transport to balance the buoyancy production in our 
case.  

 

 
Figure 5 - Dimensionless turbulent transport parameterization 

 
 
5.4 Parameterized dimensionless TKE budget 
 

Finally all parameterizations with our new found 
coefficients were presented in Figure 5. The local 
imbalance of TKE is clearly shown in the range of 
stability -2 < z/L <1. We can also see the residual term, 
which is basically the pressure transport assuming 

stationary and horizontal homogeneity, can not be 
neglected in a very wide range. 

Although the estimated pressure transport term 
provides us a possibility of interpreting all TKE terms, 
we are not very confident about this method. Different 
sources of error may influence the result. Stationary 
assumption has been validated by the data. Horizontal 
homogeneity was expected since the Hanford 
experiment has a large enough field, but this can not be 
verified without having any horizontal spatial 
measurements. Note that horizontal homogeneity 
introduces uncertainties in both the turbulent dissipation 
and the advection term, and thus the estimated 
pressure transport as well. Even if the assumption is 
correct, the uncertainty in the estimated pressure 
transport could still be large due to the uncertainty from 
turbulent transport term. So we believe in order to 
understand this mysterious term better, an accurate and 
inexpensive technique for measuring pressure 
fluctuations is needed. 

 

 
Figure 6 - Parameterized dimensionless TKE budget terms 

 
 
6. DISCUSSION AND CONCLUSION 
 

Atmospheric data from sonic anemometers in 
Hanford 2002 Field Experiment has been utilized to 
study parameterization of the TKE budget in the surface 
layer. The analysis included: 

1) Parameterization of the dimensionless TKE 
budget for a wide range of stability (-2 < z/L <1). 

2) Von Kármán constant was found to be 0.385. 
3) Dimensionless shear production 

parameterization generated similar coefficients 
as previous literatures for Businger-Dyer 
relation. 

4) An imbalance coefficient was introduced to 
improve Wyngaard relation and Frenzen’s 
formula. The mechanism of imbalance still 
remained unclear. 

5) Dimensionless turbulent transport 
parameterization showed a strong deviation 
from the traditional z/L law. 

From the field data, a higher spatial resolution of 
velocity and temperature measurements will greatly 



improve the TKE parameterization. A technique of 
measuring pressure fluctuations is also needed. 
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