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Abstract 
This paper firstly describes an objective verification of the National Center for Atmospheric 

Research (NCAR) mesoscale model (ARW WRF) used in the complex terrain of Southwest Asia 
from May 1 through 31 2006. The statistical evaluation is designed to assess the model’s surface 
and upper-air forecast accuracy at nine specific locations during the transforming season (May) of 
Asian Monsoon. The evidence is observed that the model biases caused by inadequate 
parameterization of physical processes, except for the 2-m (meter) temperature forecasts, are 
relatively small compared to these nonsystematic errors resulted partially from uncertainty of initial 
condition. The model errors in surface air forecasts are closely related to the terrain configuration, 
but the performance of 2-m temperature forecasts is different from that for 10-m wind field.     

Secondly, in order to understand the role of initial condition in accuracy of the model 
forecasts, this study then assimilated a kind of satellite radiance data into this model through the 
Joint Center for Satellite Data Assimilation (JCSDA) analysis system (GSI). The results show that 
on average for the 24- and 48-h (hour) forecasts of one month experiments, the satellite data 
provides useful information for improvement of initial condition, the model errors get reduced for 
most of location within the 24-h forecasts. However, the improvement is mainly limited to the 
forecasts over lower terrain or water areas.  With radiance data assimilation, the thermal and 
dynamics structure of upper air have been changed substantially, an extra warm anticyclone center 
appears over the central Southwest Asia. The satellite data assimilation produces a positive 
impacting to improve the forecast in the complex terrain areas.  

 
 
 
 
 
 
 
 
 
 
 



 
1. Introduction 

Weather prediction in Southwest Asia (SWA) is often very complex because of mesoscale 
variations induced by the diverse topography. This is a predominately semi-arid to arid region 
surrounded by Black and Caspian Sea in the north, the Mediterranean in the west, the Arabian Sea 
and Persian Gulf in the south and Himalayas in the east, and crossed by the impressive Tauros and 
Zagros mountains. Although a few previous model studies (Even and Smith 2001, Even et al. 2004) 
provided some interesting results for the basic weather of simulation in SWA using a regional 
climate model (RegCM2) or MM5 model, the performance of new generation mesoscale forecast  
model (ARW WRF) developed by NCAR (Skamarock et al., 2005) employed in the operational 
forecasts over this region is not quite understood. One of purpose in this paper is to evaluate the 
predictability of ARW WRF model in SWA complex terrain.   

The evaluation primarily concentrates on the forecasts of wind and temperature in this study 
since SWA is dominated by the hot dusty wind weather (Agrawala, et al., 2001). During May the 
transforming season from winter to summer, the temperature and dust wind increase substantially 
and the unstable local-scale weather occurs frequently, so that the accuracy of prediction is highly 
dependent upon the accuracy of the temperature and wind forecasts.  

Some recent studies have evaluated ARW WRF model based on objective error statistics 
for precipitation forecasts over United States. Christopher et al. (2006) evaluated WRF forecasts 
over the continental United States against stage-IV observations for precipitation forecasts, pointed 
out that the model bias is associated with systems over the different location. Cheng and 
Steenburgh (2006) presented surface sensible weather forecasts by WRF and Eta model over the 
western United States. Their results suggest that improvements in initialization may be as or more 
important than improvements in physics for land surface processes.  Gallus and Bresch (2006) 
compared the impacts of WRF dynamics core, physics package, and initial conditions on warm 
season rainfall forecasts over central United States. They found that the sensitivity of rainfall 
forecasts is a function of model physics, dynamics, and initial conditions and depends on case by 
case.  For heavier rainfall, sensitivity to initial conditions is generally less substantial than the 
sensitivity to changes in dynamic core or physics.  For light rainfall, the WRF model using NCAR 
physics is much more sensitive to a change in dynamic core than the WRF model using NCEP 
physics.  It is very clear that the errors of weather forecasts are caused by many reasons.  One of 
these reasons can be attributed to the imperfection of numerical model in representing the actual 
atmosphere. However, as Lorenz (1963) pointed out, the most fundamental cause of forecast failure 
is because the atmosphere is a chaotic system. A chaotic system is defined as one in which 
evolution is sensitive to initial conditions (ICs). It means that an arbitrarily small error in the 
analysis of the initial state of the atmosphere can have an overwhelming effect in a finite amount of 
time. Therefore, it is not surprising that considerable effort has focused on improving the estimates 
of the model initial states through advanced techniques. One of such techniques is the data 
assimilation. So that another purpose in this paper is to evaluate the impact of data assimilation on 
the weather forecasts over SWA areas. 

The paper is organized as follows. Section 2 describes the real-time configuration of ARW 
WRF as run operationally within SWA. Section 3 explains the objective methodology used in the 
statistical verification. The results of the objective verification for the May 2006 are presented in 
section 4. Section 5 discusses the impact of data assimilation on the weather forecast. Finally, the 
summary and discussion are given in section 6. 
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2. ARW WRF model and forecasts 

The weather model used in this study is the Advanced Weather Research and Forecasting 
(ARW WRF) model (Michalakes et al. 2001; Skamarock et al. 2005), which is a nonhydrostatic, 
fully compressible, primitive equation model. Lead institutions involved in the effort include the 
National Center for Atmospheric Research (NCAR), Air Force Weather Agency (AFWA), 
National Oceanic and Atmospheric Administration (NOAA), and other government agencies and 
universities. WRF is built around a software architectural framework in which different dynamical 
cores and model physics packages are presented under the same code. With the WRF model, it is 
possible to mix and match the dynamical cores and physics packages of different models to 
optimize performance since each model has strengths and weaknesses in different areas.  It uses a 
terrain-following hydrostatic pressure coordinate and the Arakawa C grid staggering. 

A 15-km grid centered over the Southwest Asia (SWA) region (Fig. 1) is used to give better 
representation of the regions' complex topography and associated spatial variability in surface 
characteristics. To assess the predictability of the model, the forecasts are made for 48-h (hour) 
each day starting at 00Z during period of May 1 through 31 2006. In order to distinguish it from the 
following forecasts with data assimilation in section 5, the current forecast without data 
assimilation is named as NODA. The initial atmospheric and surface fields and boundary 
conditions, including soil moisture and temperature, are taken from the NCEP Global Forecast 
System (GFS) real time forecasts. The lateral boundary conditions are time dependent.  The physics 
of the model are been chosen including  the WRF Single Moment (WSM) 5-class microphysics 
scheme, Yosei University planetary boundary layer (PBL) scheme, Noah land surface scheme, 
Grell-Devenyi ensemble cumulus scheme, Rapid Radiative Transfer Model (RRTM) longwave 
radiation, and the Dudhia shortwave radiation scheme.  The vertical 42-layer σ values are 0.995, 
0.992, 0.983, 0.975, 0.961, 0.949, 0.932, 0.917, 0.897, 0.878, 0.855, 0.832, 0.806, 0.778, 0.749, 
0.718, 0.687, 0.654, 0.623, 0.590, 0.559, 0.526, 0.495, 0.462, 0.431, 0.398, 0.367, 0.334, 0.304, 
0.272, 0.244, 0.213, 0.187, 0.158, 0.134, 0.107, 0.085, 0.060, 0.040, and 0.018. 

 
3. Topography and Evaluation method  

To investigate the spatial heterogeneity of complex terrain in SWA region, nine 
representative sub-regions are depicted in Figure 1. They are defined as north of Iraq (A; 34°–
36°N, 41°–43°E); northwest of Iran  (B; 34°–36°N, 46°–48°E); north central of Iran (C; 34°–36°N, 
54°–56°E); central of Afghanistan (D; 34°–36°N, 66°–68°E); west of Himalaya mountain (E; 34°–
36°N, 74°–76°E); west of Saudi Arabia (F; 22°–24°N, 41°–43°E ); east of Saudi Arabia (G; 22°–
24°N, 51°–53°E ); Arabian Sea (H; 22°–24°N, 63°–65°E ); and west of India (I; 22°–24°N,  70°–
72°E ). 

Table 1 displays the height of topography (Hgt), vegetation type (Veg) and soil type (Soil) 
over these nine regions. Except for the water type in Arabian Sea (marked H), the soil types in all 
other eight regions are loam, but the vegetation types show a little differences: the three high 
terrain over 2500 meter mountain regions (marked B, D and E) are covered by short plants with 
grass, shrubland and wooded tundra, respectively; the three low terrain under 1000 meter regions 
(marked A, C and F) and  the two plain regions (marked G and I) almost do not have any plants. 
Obviously, the nine sub-regions represent significantly the heterogeneity of complex terrain in 
SWA region. 

The objective evaluation is designed to present the model errors of winds and temperature 
for both 24-h (hour) and 48-h (hour) forecasts. The statistical measures used to quantify model 
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forecast errors are the bias (forecast − observation), root-mean-square (RMS) error, and error 
standard deviation (SD). For purposes of interpretation, the total error (RMS error) includes 
contributions from both systematic and random errors. Systematic error (Bias) can be caused by a 
consistent misrepresentation of physical parameters such as radiation or model convection. 
Nonsystematic or random errors, given by the error SD, are caused by uncertainties in the model 
initial condition or unresolveable differences in scales between the forecasts and observations 
(Nutter and Manobianco 1999).  Note that due to lack of observations in SWA region, the analysis 
productions of GFS have been used to replace the observations. 

If X represents any of the parameters under consideration for a given time and vertical 
level, then forecast error is defined as X′ = Xf − Xa, where the subscripts f and a denote forecast and 
analyzed quantities, respectively. Given N valid pairs of forecasts and analysis, the bias is 
computed as 
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The SD error is computed as 

  

2/1
2

1

'' )(1
⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

N

i
i XX

N
SD            (3)      

Note that if the model bias or systematic error is small, most of the RMS error is due to 
random, which is nonsystematic type variability in the errors. 
 
4. Objective verification results 
a. Surface 

In the following section, ARW WRF model forecast error characteristics for 2-m (meter) 
temperature and 10-m wind speed are established. Results from the 30 days forecasts in the period 
of May 1 through 30 2006, the averages on both 24-h (hour) and 48-h forecasts are a function of 
location described in Fig. 1. 
 
 1) Temperature at 2-M  

During May 2006, biases in 2-m temperature forecasts change with elevation of terrain       
(Fig. 2a). The amplitude of errors is larger at high terrain regions (E, B, D) with reaching −5°C of 
cold biases during the 24-h forecasts. Meanwhile, the biases are significantly smaller in low terrain 
regions (A, C, F, G, I) or water area (H ) for both 24-h and 48-h forecasts.  

Except that the SD error in the highest terrain region (E: west of Himalayas mountain) has 
an equivalent order of forecast bias, it is very small in the other areas. However, the forecast biases 
and corresponding RMS errors are comparable in magnitude in the most of mountain areas           
(Fig. 2a, b, c ), the larger contribution to the total error for these locations evidently is derived from 
a systematic model error. The result indicates an apparent model deficit for description of surface 
temperature in high terrain areas.  
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2) Wind Speed at 10-M 

 Compared to forecasts of temperature at 2-m, the total forecasting errors in the 10-m wind 
speed are contributed largely by the nonsystematic error in the most of areas (not shown). The 
biggest of model biases occurs at northwest of Iran (B) with about −2.5 m s-1. The biases at west of 
Himalayas mountain (E), east of Saudi Arabia (G) and west of India (I)  are almost zero.  

Based on above results, it is not difficult to find that the total forecast errors at surface show 
a substantial spatial heterogeneity, there is a relative bigger error in higher mountain areas. 
However, the resource of errors indicates a significant difference between temperature and wind 
speed, the errors in temperature at 2-m are mainly from systematic errors, which are controlled 
largely by the physical representation; meanwhile, the errors are positively correlation with 
elevation of terrain.  In contrast, the errors in 10-m wind speed get more contribution from 
nonsystematic errors, which are probably related to uncertainty of initial condition. In general, the 
surface air does not apply to the upper air, how about the performance in upper air will be 
considered in the following section. 

 
 

b. Upper air 
1)  Temperature at 500 hPa 

The temperature biases at 500 hPa are range from -4°C to 1 for 24-h (Fig. 3) and a little 
colder with maximum -5°C for 48-h forecasts. The largest error appears over Himalaya mountain 
areas. The RMS errors range from about 1° to 2°C and the larger magnitude randomly distribute 
over central of Saudi Arabia, southeast of Iraq, northwest of Iran  and west of Himalaya mountain. 
The corresponding error SD of 1°–2°C reveals that nonsystematic errors compose a substantial 
portion of the total error except for west of Himalaya mountain. Compared to the counterparts in 
24-h forecast, the 48-h forecasts error is bigger in the most of study areas.  

 
2) Winds at 200 hPa 

Similar to the temperature forecasts at 500 hPa, the 24-h zonal wind forecasts at 200 hPa 
show (not shown) that the total forecast errors are dominated by the nonsystematic errors. But, note 
a substantial difference that the largest forecast error at Himalaya mountain is consistent with 
nonsystematic error and the Arabian Sea has also a strong nonsystematic error.  

To further investigate the relation of mountain to the forecasting errors, we consider the 
meridional wind component. The result indicates that the larger forecast errors occur over a 
different place from the zonal wind forecasts. The largest forecast errors in land spread along the 
west slope of mountain   

This difference is also evident looking at a comparison of zonal wind from meridional wind 
(not shown) that the larger forecast error in Himalaya mountain disappears in the meridional wind 
field.  

To summarize, the performance of surface air is different from upper air; 2-m temperature 
forecast error caused by systematic error is more associated with the elevation of terrain, in 
contrast, similar to 10-m wind speed, upper air forecast error is dominated by the nonsystematic 
error, which is not closely related to configuration of terrain.   

 
 
 

 44 



5. Impact of Satellite data Assimilation     
In terms of the previous results, it is very clear that the model errors for most of forecast 

variables except for the 2-m temperature are dominated by the nonsystematic errors, which are 
caused by uncertainties in the model initial condition or unresolveable differences in scales 
between the forecasts and observations (Nutter and Manobianco 1999). So that the model initial 
condition is one of very important factors to impact on the model forecast error. By the many 
previous studies (Tracton et al. 1980; Halem et al. 1982; Andersson et al. 1991; Mo et al. 1995; 
Derber and Wu 1998; Bouttier and Kelly 2001) indicates that the assimilation of satellite radiance 
observations into a numerical weather prediction (NWP) system is an important path to improve 
weather forecasts by providing initial conditions representative of the true state of the atmosphere.  
For purpose of understanding the role of initial condition in the accuracy of forecasts, the satellite 
observation data assimilation will be considered in this section.  
 
a.  Data Assimilation system 

There are two basic approaches to assimilate satellite information into a data assimilation 
system (DAS). The first is to assimilate retrieved data from radiances measured by satellite 
instruments. The second is to assimilate radiance measurements directly into a DAS.  Direct 
radiance assimilation is theoretically superior to retrieval assimilation because the observational 
error statistics are more justified in direct radiance assimilation than in retrieval assimilation (Eyre 
et al. 1993; Derber and Wu 1998; Mcnally et al., 2000). The latter will be used in current study. 

Developed by Joint Center for Satellite Data Assimilation (JCSDA), the Gridpoint 
Statistical Interpolation (GSI) analysis system is linked to the ARW WRF mesoscale system and 
the ATOVS (e.g., The Advanced Television and Infrared Observation Satellite (TIROS)-N 
Operational Vertical Sounder) observation used. The GSI analysis system is being developed based 
on NCEP current three-dimensional variational analysis (3DVAR) system known as Spectral 
Statistical Interpolation (SSI) (Parrish and Derber 1992).   

 
b. Satellite data 

The Satellite data is from ATOVS datasets supplied by NESDIS. The ATOVS is composed 
of Advanced Microwave Sounding Unit (AMSU) and High-Resolution Infrared Sounder (HIRS)/3. 
Two separate radiometers (AMSU-A and AMSU-B) compose the AMSU platform. The AMSU-A 
is a cross-track, stepped-line scanning total power radiometer. The instrument has an instantaneous 
field-of-view of 3.3° at the half-power points providing a nominal spatial resolution at nadir of 48 
km. The AMSU-B is a cross-track, continuous line scanning, the total power radiometer has an 
instantaneous field-of-view of 1.1° (at the half-power points). Spatial resolution at nadir is 
nominally 16 km. The antenna provides a cross-track scan, scanning ±48.95° from nadir with a 
total of 90 earth fields-of-view per scan line.  

These AMSU-A and AMSU-B radiance being used in current study have undergone 
substantial preprocessing by NESDIS before becoming available for usage.  The data have been 
statistically limb corrected (adjusted to nadir) and surface emissivity corrected in the microwave 
channels.  It is clear that NOAA-16 data cover the most of southwest Asia areas, the AMSU-B has 
more intensity of observation than the AMSU-A.     

Derber and Wu (1998) pointed out that a presence of a single data point containing large 
errors can result in substantial degradation of the analysis and subsequent forecast.  For this reason, 
a simple quality control has been developed and the observed brightness temperature data have 
been modified empirically with various parameters for different instruments.  In the GSI analysis 
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system, the check will include two steps.  First, a location check (including removal of observations 
outside the domain) and thinning procedure (excluding location/time duplicates and incomplete 
observations) will be performed to ensure vertical consistency of upper-air profiles.  Secondly, 
numerous quality control (QC) checks are redone based on various quality parameters after the 
modeled brightness temperature was obtained through the radiative transfer model.  These quality 
parameters are used in terms of the expected observational error variance as a function of channels 
and have been adjusted by the position across the track of the scan, whether it is over land, sea, 
snow, sea ice, a transition region, elevation, the difference between the model and the real 
topography, and the latitude. The statistics show that the number used in the GSI regional data 
assimilation system is quite different.  The AMSU-B has much more than the other two AMSU-A.  
Firstly, we will look at the details for each day.  In NOAA-15, the maximum number of AMSU-B 
for all 30 days is from 50000 to 150000 pixels, and for AMSU-A, the number is only around 40000 
pixels.  In NOAA-16, the number in AMSU-B exceeds 150000 pixels, while the AMSU-A is under 
60000 pixels.  Secondly, on average for 30days, the evidence shows that through two QC steps, the 
final assimilated number of radiance reduces substantially.  The used percentage in AMSU-A is 
over 40%, but in AMSU-B is only 16%.   

It is obvious that bias correction and quality control toss out many bad data.  It is a benefit 
to the minimization procedure in data assimilation systems, however, due to the imperfections 
inherent in bias correction and quality control schemes, a lot of valuable observation data has been 
tossed out.  Future studies should continue to refine good bias correction and quality control 
schemes.   

 
c. Experiments design 

If the previous forecasts described in section 2 excluding satellite data assimilation is 
expressed as NODA, the current forecasts including satellite data assimilation is referred as DA, 
which is the same as the NODA except for the initial condition updated by the AMSU-A and 
AMSU-B radiance data assimilation using the GSI analysis system.  
 
d. Results analysis 

To investigate the effect of ATOVS radiance data assimilation on the forecasts over the 
study areas, two statistical variables - mean square error skill scores and   standardized Z statistic – 
are calculated against the analysis data.   
 
 1) Mean-square-error skill scores 

By the previous study (Murphy 1988), forecasting skill scores are generally defined as 
measures of the relative accuracy of two forecasts, one of the two forecasting system is a “reference 
system”. For current experiments, the NODA forecasts can be taken as the reference system. Based 
on the mean-square-error, the skill score (SS) can be expressed as follows: 

)],(/),([1),,( 22 arRMSadRMSardSS −=          (4) 
Note that SS in (4) is a function of the DA forecasts ( d ), the NODA reference forecasts ( 

r), and the analyzed quantity ( a ); the  RMS (d, a) and RMS (r, a) are defined as equation (2) 
indicating the root mean-square-error of DA and NODA forecast relative to the analysis, 
respectively. To the extent, the positive skill is reflected the better performance than the reference 
forecasts.   

Fig. 4 contains the results for the 2-m temperature, and 10-m wind speed over the nine 
specific locations. For the 2-m temperature, the results indicate that all SS in the different specific 
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locations is positive for the 24-h and 48-h forecasts, but the SS for 48-h forecasts in the most of 
areas is much smaller than that for 24-h forecasts. The SS in the north of Iran mountain (B) and 
west of Himalaya mountain (E) is about 10-20% smaller than that in the lower mountains or plain 
areas.  Compared to Fig. 2, we can find that the forecasts errors in the high mountain areas are 
mainly from the model systematic errors, the nonsystematic errors make a relative smaller 
contribution to the total forecasts; the satellite data assimilation, at least for the AMSU-A and 
AMSU-B radiance, seems not to make a significant contribution to the improve accuracy of surface 
temperature forecasts in the higher mountain areas. 

In contrast, the 10-m wind speed shows a different SS value from the surface temperature, 
six of nine locations including all high mountain areas (B, D, E) appears negative skill score, it 
means the satellite data assimilation produces negative impacts, but the SS in Arabian Sea gets by 
45% and 35% for 24-h and 48-h forecasts, respectively.           

From these statistical results, it is suggested that assimilation of satellite radiance produces 
better forecasts of surface temperature and wind speed. However, the improvement is mainly 
limited to the forecasts over lower terrain or water areas.   

 
 
 

2)   Standardized Z statistic   
In order to determine if the initial condition updated by satellite data assimilation leads to a 

statistically significant change in forecast accuracy, a standardized Z statistic (Walpole and Meyers 
1989) is calculated for a given parameter and compared with the normal distribution using a 99% 
confidence level. The Z statistic is defined as follows: 
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Where, X, X ’and SD represents the same as equation (1) ~ (3), the subscripts 1 and 2 denote 
variables from the NODA and DA forecasts verifying at 24-hour and 48-hour, respectively. Other 
notation is that SD12 denotes the covariance of two forecasts.  

For purposes of understanding the statistical significant of data assimilation influence, we 
firstly look what the impacting is from the data assimilation. The difference between DA and 
NODA forecast at 24-h and 48-h forecasting has been calculated to represent the impacting. For the 
24-h forecasts (Fig. 4), the 2-m temperature DA forecasts in the most of Southwest Asia region 
including Saudi Arabia, Syria, Iraq, Iran, Afghanistan and Pakistan  are on average 0° to 2°C 
warmer than the NODA forecasts, the larger impacting occurs at south or southwest slope off the 
Hindu Kush mountain areas (compared against Fig. 1). Over the 48-h forecast, the positive 
difference reduces substantially (not shown). Secondly, using a 99% confidence level, value of the 
standardized Z statistic that lie outside the critical value of ±2.58 indicates that the data are able to 
support a statistically significant. Measured by this standard, the Z (Fig. 5) displays that the 
positive difference only in southeast of Iran are not statistically significant. The nonsystematic 
errors limited within Afghanistan and Pakistan areas contribute to a substantial portion of the total 
model error.  
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Comparison of the difference in 10-m wind speed for 24-h and 48-h forecasts (not shown) 
reveals that the large impacting locates over Arabian Sea, Red Sea, Persian Gulf and border of 
Pakistan and Afghanistan, these places are beyond areas of high terrain mountain. However, the 
statistical significant regions are only over a few places in the northwest Arabian Sea, borders of 
Pakistan and Afghanistan for 24-h forecasts. There is almost no place getting over statistical 
significant for 48-h forecasts. If the impacting of the satellite data assimilation on 2-m temperature 
occurs nearby the mountain region, the impacting on the 10-m wind speed happens on the places 
far away from these mountains, especially over water areas.     

For upper air, the detailed statistical results of 500 hPa temperature and geopotential height 
forecasts are presented that the radiance data assimilation increases both the temperature and 
geopotential height over the central of Southwest Asia, the standardized Z statistic shows the 
statistical significant over these region. It is obvious that the upper temperature and geopotential 
height forecasts impacted by satellite data assimilation are not associated with configuration of 
terrain. However, the impacting covers the most of portion of the study areas in spite of the 
impacted region reduced substantially for the 48-h forecasts (not shown). 

Consistent with the changes of the temperature forecast, the 24-h forecast of wind fields at 
200 hPa are modulated by the radiance assimilation with a same way. The wind forecast shows (not 
shown) that the westerly (easterly) increases in the north (south); the southerly (northerly) in the 
west (east). The standardized Z statistic shows the lager anomaly areas exceed the significant 
statistical test. These results indicate that with radiance data assimilation, the thermal and dynamics 
structure of upper air has been changed substantially, an extra warm anticyclone center appears 
over the central Southwest Asia.  

 
6. Summary and Discussion 
a. Summary 

This paper presented an objective verification and impacting of radiance data assimilation 
on the weather forecast over the complex terrain areas of Southwest Asia using the National Center 
for Atmospheric Research (NCAR) mesoscale model (ARW WRF) and Joint Center for Satellite 
Data Assimilation (JCSDA) analysis system (GSI). The experiment period is from May 1 through 
31 2006. The results are summarized as follows: 

The model biases caused by inadequate parameterization of physical processes, except for 
the temperature at 2 meter, are relatively small compared to these nonsystematic errors results 
partially from initial condition uncertainty. The total forecast errors at surface show a substantial 
spatial heterogeneity, there is a relative bigger error in higher mountain areas. However, the 
resource of error indicates a significant difference between temperature and wind speed, the error in 
temperature at 2-m is mainly from systematic error, which is controlled largely by the physical 
representation; meanwhile, the errors are positively correlation with elevation of terrain.  In 
contrast, the errors in 10-m wind speed get more contribution from nonsystematic error, which is 
probably related to uncertainty of initial condition.  

The performance of upper air is different from surface temperature. Similar to the 10-m 
wind speed, upper air forecast error is dominated by the nonsystematic error, which is not closely 
related to configuration of terrain.   

The ATOVS satellite data provides useful information for improvement of initial 
conditions, and the model error got reduced substantially within the 24 hour forecasts. The mean 
square error skill score (SS) shows that assimilation of satellite radiance produce better forecasts of 

 88 



surface temperature and wind speed. However, the improvement is mainly limited to the forecasts 
over lower terrain or water areas. 

The standardized Z statistic indicates that with radiance data assimilation, the thermal and 
dynamics structure of upper air has been changed substantially, an extra warm anticyclone center 
appears over the central Southwest Asia.  However, the upper air forecasts impacted by satellite 
data assimilation are not associated with geographic location of high terrain. 

 
b. Discussion 

In this study, the weather forecasts using the ARW WRF system is evaluated over the 
Southwest Asia mountain areas. Due to the complexity of the high terrain and lack of knowledge in 
the estimation of physical processes, the limitations of forecasts for this model should be paid more 
attention. 

First of all, parameterization of physical processes plays a significant role in forecasting of 
surface temperature. For the 2-m temperature forecasts, the systematic error component is not only 
larger than the random errors, but also indicates it is substantial related to the elevation of terrain. 
In contrast, the random errors are responsible for the forecasting of upper air or 10-m wind fields. 
The random errors prevent perfect forecast guidance and are caused by a combination of 
uncertainty of initial condition and unreasonable model scales. The detailed statistical results 
presented in sections 4 are specific to surface and upper-air at nine specific locations. The basic 
error characteristics for one forecasting variable vary by the selected locations, and may not be 
representative of errors at other forecast variables. For example, in a preliminary investigation of 
temperature errors, the results demonstrated that the maximum 2-m temperature biases occurred 
over the high mountain areas while the temperature bias on 500 hPa were found over the most of  
southwest Asia, it do not related to configuration of terrain.  

Note that the results presented here are referred to the NCEP global analysis system, the 
value of forecasts performance need to be verified fatherly by the real-time station observation.  As 
expressed by Manning and Davis (1997), “These statistics would provide additional information to 
model users and alert model developers to those research areas that need more attention.” The 
additional and complementary need for verification strategies in ARW WRF models is discussed in 
following papers. 

 Secondly, the random error is very complicated, it is possible partially from the uncertainty 
of initial condition, a good initial condition might help users to compare the latest forecast guidance 
with current observations and make appropriate adjustments in real time. The assimilation of 
satellite radiance observations into a numerical weather prediction (NWP) provide initial 
conditions representative of the true state of the atmosphere.  Current results show that positive 
impacts of satellite data on weather prediction in the most of Southwest Asia areas, but the impacts 
are not as obvious in the high terrain areas, such as Himalaya Mountain and Iran Mountain regions. 
This feature implies that the random error is not only from the uncertainty of initial condition, the 
other reason like the resolution of model horizontal scale is necessary to be considered. This issue 
will be discussed in the other future work. 
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Table 1     The height of topography (Hgt: meter), vegetation type (Veg) and soil type (Soil) in 

the specific nine subregions (defined as Fig. 1) over SWA. 
 

 A B C D E F G H I 

Hgt 328 2557 737 3833 4839 958 67 0 75 

Veg barren grass barren Shrub 
land 

wooded 
tundra 

barren barren water Dry 
land 

Soil loam loam clay 
loam 

loam loam sandy 
loam 

loam water loam 
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F G H I 

 
 
Figure 1 Domain of model and subregion definition. Shaded indicates the elevation of terrain. The 
subregions are defined as north of Iraq (A; 34°–36°N, 41°–43°E); northwest of Iran  (B; 34°–36°N, 
46°–48°E); north central Iran (C; 34°–36°N, 54°–56°E); central Afghanistan (D; 34°–36°N, 66°–
68°E); west of Himalaya Mountain (E; 34°–36°N, 74°–76°E); west of Saudi Arabia (F; 22°–24°N, 
41°–43°E ); east of Saudi Arabia (G; 22°–24°N, 51°–53°E ); Arabian Sea (H; 22°–24°N, 63°–65°E 
); and west of India (I; 22°–24°N,  70°–72°E )  
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Figure 2     Bias, root mean 
square (RMS) error and 
standard deviation(SD) 
error for 2-m temperature 
(°C) forecasts from 0Z for 
May 1 through 31, 2006. 
Results are plotted for 
averaged 24-h and 48-h 
forecasts as a function of 
specific location (marked as 
A, B, C, D, E, F, G, H, I) 
defined in Fig.1  
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Figure 3   500 hPa temperature. Shaded region indicates the error exceeds 0.75°C. 
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Figure 4  Mean 
square error skill 
scores (SS) for 2-m 
temperature (upper 
panel) and 10-m 
wind speed (lower 
panel). Results are 
plotted for averaged 
24-h and 48-h 
forecasts as a 
function of specific 
location.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          

Figure 5 Statistical results 
in mean 24-h forecasts for 
2-m temperature (°C) May 
1 through 31 2006. Upper 
panel: averaged difference 
between data assimilation 
(DA) forecasts and 
Control (CTRL) forecast; 
Lower panel: standardized 
Z statistics, the value of Z 
is outside ±2.58 indicating 
that the changes caused by 
data assimilation are 
considered statistically 
significant at the 99% 
confidence level. 
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