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1.    INTRODUCTION 

 
Snyder and Zhang (2003; SZ03 hereafter) 

introduced the storm-scale NWP community to 
the use of an Ensemble Kalman Filter (EnKF) 
(Evensen 1994) for assimilating Doppler radar 
observations into numerical models, which has 
been used to analyze observed isolated supercell 
thunderstorms (Dowell et al. 2004; D04 
hereafter).  D04 noted that the technique showed 
promise in depicting the reflectivity and velocity 
structures of the supercell, but seemed to be 
lacking in retrieving the thermodynamic variables 
and the surface cold pool in particular.  
Furthermore, it is noted in SZ03 and D04 that the 
utility of the EnKF technique applied to storm-
scale problems is unknown in complex 
convective situations with multiple updrafts and 
interacting cold outflows, which is related to the 
linearity and normality assumptions of the 
technique.  Therefore, it is unclear how well the 
technique will work on observed mesoscale 
convective systems (MCSs); it is well known that 
MCSs depend on the character of the 
convectively generated cold pool and often 
develop from a complex interaction of mixed 
convective modes.  Therefore, the goal of this 
study is to examine the application of the EnKF 
technique using real Doppler radar observations 
of a developing MCS.  Storm-scale EnKF is in a 
developmental stage and, therefore, we focus on 
examining the viability of the technique for a 
complex convective scenario and present some 
simple experiments that highlight the sensitivity of 
the analyses to aspects of the filter design. 
 
2.  ENKF RADAR DATA ASSIMILATION 

 
The EnKF is a method to retrieve 

unobserved atmospheric variables from 
observations, which in this application is Doppler 
radar reflectivity and radial velocity.  Statistical 
assimilation techniques require information on 
the relationship (or covariance) between the 
unobserved variables and the observed 
variables.  The EnKF obtains these covariances 
from an ensemble of numerical model forecasts, 
which is presumably a benefit of using this 
technique over 3D or 4D variational schemes 
since the latter requires the covariance 
relationships to be prescribed before hand.  
Given an observation, the goal is to adjust the 

other model variables according to the 
covariance between the model reflectivity at that 
point and the unobserved model variables near 
the observation location.  For example, given a 
reflectivity observation of 50 dBZ, we want to 
adjust the vertical velocity in the model forecasts 
based on this observation.  We find the 
covariance between the model’s representation 
of reflectivity at the observation point and the 
vertical velocity at the grid points near the 
observation point among all the ensemble 
members.  If there is a positive relationship 
between reflectivity and vertical velocity and the 
observed reflectivity is higher than the ensemble 
mean reflectivity prior to the observation, then the 
adjustments will result in a mean vertical velocity 
that is higher than the ensemble mean prior to 
the observation.  This procedure is repeated for 
every model variable (except for pressure and 
the mixing coefficient) and for every observation. 
We refer the interested reader to SZ03 and D04 
for further details of the EnKF technique and its 
application to radar data. 

 
3.  MCS OBSERVATIONS 
 

This study examines the 16-17 June 2005 
MCS across southeast Kansas and northwest 
Oklahoma. The environment near initiation had 0-
6 km bulk wind shear of 40 kt, mixed-layer CAPE 
of 3500 J kg-1, and downdraft CAPE of 1400 J kg-

1 (Fig. 1).  The convection developed quickly into 
a cluster of supercells and multicells and later 
organized into a derecho-producing MCS (Johns 
and Hirt 1987).  Although a long-term goal of 
storm-scale data assimilation and NWP is to be 
able to predict the entire evolution of events of 
this type, this study focuses on EnKF analyses of 
the developing MCS in the time period between 
2300 UTC on 16 June and 0030 UTC on 17 
June. 

 
The period of Doppler radar observations 

consists of multiple cells with various modes 
undergoing an upscale transition.  A benefit of 
the relatively large size of the developing MCS is 
that data was collected from both the WSR-88D 
sites at Dodge City, KS (KDDC) and at Vance Air 
Force Base in Oklahoma (KVNX).  Although data 
from both these radars could be used in the 
assimilation, only the KDDC data is used in this 
capacity.  This affords the use of the KVNX data 



as independent evaluation, especially in later 
stages of the MCS development when the 
system is located nearly half way between the 
two radar sites and has a convective organization 
nearly perpendicular to the beams of both radars.  
The Oklahoma Mesonet surface-observing site at 
Buffalo, OK also is used in the evaluation. 
 
4.  NUMERICAL MODEL AND ENSEMBLE 
DESIGN 
 

The numerical forecast model employed is 
the collaborative model for multiscale 
atmospheric simulation (COMMAS).  Prognostic 
variables include the three velocity components, 
u, v, and w, pressure (in the form of the 
perturbation Exner function, π′), potential 
temperature, θ, and six categories of water 
substance, including water vapor, qv, cloud water, 
qc, rain water, qr, ice, qi, snow, qs, and 
hail/graupel, qh.  A Lin-Farley-Orville scheme is 
used for the microphysical parameterization with 
parameters set to bias the distribution to a 
mixture of hail and graupel.  More details on the 
model can be found in Coniglio et al. (2006). 

 
The model domain contains 108 x 78 x 31 

grid points covering 321 km x 231 km x 18 km in 
the x, y, and z directions, respectively, with grid 
intervals of 3 km in the horizontal directions and a 
vertically stretched grid with a constant interval of 
400 m in the lowest 5 layers stretching to 700 m 
at the top of the domain.  Although this model 
resolution can only represent the gross features 
of convective cells accurately, it is suitable for 
studying MCSs (Weisman et al. 1997, Bryan et 
al. 2003) and is comparable to the state-of-the-art 
operational NWP models (Kain et al. 2006). 

 
An ensemble of 50 horizontally 

homogeneous model states is created by adding 
uncorrelated random perturbations to the base-
state environment represented in Fig. 1.  This 
initialization technique differs from that of D04 in 
that perturbations vary only in the vertical 
direction.  Unless otherwise noted, the standard 
deviation (σ, or referred to as the “spread”) of the 
perturbations applied to u and v among the 31 
vertical levels is specified to be 2.0 m s-1.  In 
addition, perturbations with σ = 1 K are added to 
the temperature and dewpoint profiles. The 
perturbations result in a standard deviation of 
CAPE of 333 J kg-1 and 0-6 km bulk shear of 2.4 
m s-1 among the 50 initial states, which is 
comparable to the accuracy provided by the 
observations and the RUC analysis. 

 
5.  ENKF ANALYSES 

a. Configuration of the control and baseline 
experiments 

 

A control experiment (CNTL) is produced 
using the initialization procedure described 
above.  To facilitate the development of storms, 
ellipsoidal θ perturbations (“bubbles”) of 2.5 K at 
the center that decrease to zero at a horizontal 
(vertical) radius of 10 km (5 km) are introduced 
every five minutes near the locations where the 
difference between the observed and ensemble 
mean reflectivity field exceeds 30 dBZ.  Although 
the bubbles are additive in locations where they 
overlap, we use a large dBZ difference and place 
the bubbles randomly around these locations to 
prevent too many bubbles from piling up large 
temperature perturbations that could lead to 
model instabilities.  We also find that distributing 
the bubbles randomly near these locations helps 
to maintain ensemble spread during the 
assimilation compared to simply placing bubbles 
at the exact locations where the reflectivity is too 
low. 

 
Spread in the ensemble also is maintained 

by adding spatially smoothed noise every five 
minutes to u, v, and θ, with a standard deviation 
of 1 m s-1 and 0.5 K, respectively, at locations 
where the observed reflectivity exceeds 20 dBZ.  
For this we use the technique in Caya et al. 
(2005) (see their section 3b1).  Through 
experimentation, it is found that these techniques 
maintain enough spread throughout the 90 
minute assimilation period to preclude any 
substantial benefit from artificial covariance 
inflation (Anderson 2001, Tong and Xue 2005), 
which is not used in any of the assimilation 
experiments. 

 
One of the goals of storm-scale EnKF is to 

produce a scale-appropriate analysis of the 
convective event in question.  It is important to 
show that an EnKF analysis can improve 
significantly upon a simulation that is produced 
using traditional techniques, e.g. using warm 
bubbles to initiation convection.  Therefore, we 
compare the CNTL experiment to a baseline 
experiment (BASE), which is one that we’d hope 
to significantly improve upon using the EnKF 
technique.  The purpose of the BASE experiment 
is to show that the improvement provided by 
using EnKF is obvious and substantial. 

 
Warm bubbles are introduced in the BASE 

experiment where the difference between the 
observed reflectivity and model reflectivity 
exceeds 30 dBZ.  However, no assimilation of 
radar data takes place and the bubbles are 
placed at the exact locations of where the storms 
are missing in the model (remember that the 
bubbles are placed randomly around these 
locations in the CNTL experiment).  Bubbles are 
introduced every five minutes and the maximum 
potential temperature perturbation at any grid 
point is limited to 6 K.  It is hoped that the 



assimilation of radar data over this time period 
can improve on the performance of this rather 
simple baseline ensemble. 

 
b. Comparison of CNTL and BASE reflectivity 

 
The CNTL experiment depicts three main 

storm clusters in the correct locations after 20 
minutes of assimilation (about 5 volume scans) 
(Figs. 2a & b), but the storms are slightly smaller 
and less intense than in reality.  By 40 minutes 
however, the size of the storm clusters closely 
match reality with a slight under representation of 
the maximum reflectivity values (see Fig. 4 for a 
comparison of the overall mean error in 
reflectivity).  This trend continues throughout the 
assimilation period with the general storm-scale 
configuration represented very accurately in the 
CNTL experiment.  Note the supercell structures 
evident in the observations and in the analysis. 
 

In general, the EnKF system appears to 
require about 5-6 volume scans to reproduce the 
size and strength of the cells.  For example, 
notice the small, newly developed cell almost due 
east of KDDC at 40 min (circled on Fig. 2d).  The 
EnKF procedure hasn’t had time to represent the 
cell in the analysis valid at the same time (area 
circled Fig. 2e), but very accurately represents 
this cell at 40 minutes (circled in Figs. 2g and 2h).  

 
A comparison of the CNTL and BASE 

experiments (Figs. 2c, 2f, 2I, and 2l) clearly 
illustrates the benefit of EnKF versus a bubble-
only approach.  The storms are much slower to 
develop in the BASE experiment and, 
furthermore, lack the storm scale detail and 
accurate placement of the storms in the CNTL 
experiment.  This increase in the storm-scale 
detail extends to other variables as well (not 
shown).  Additionally, the CNTL experiment 
comes much closer to matching the evolution of 
the surface conditions observed at the Buffalo, 
OK Mesonet site (Fig. 3; the results for the BASE 
experiment are not shown).  The storm-scale 
evolution of u, temperature, and dewpoint are 
represented fairly well (Fig. 3), although the 
drying is too large and the cooling is too small in 
the ensemble mean (the v component is not 
represented well, partially because the cold pool 
is too fast in the model simulations).  

 
Statistics to evaluate the experiments are 

calculated using the observed radial velocity and 
reflectivity from the KVNX radar.  Measures 
include the root mean square (rms) difference 
between the observations and the ensemble 
mean, the standard deviation (spread) of the 
ensemble, and the mean difference (bias) 
between the observations and the ensemble.  
Although this evaluation doesn’t account for 
differences in measuring characteristics between 

the KDDC and KVNX radars, this provides a 
reasonably accurate means to evaluate the 
overall quality of the analyses with independent 
measurements.  In addition to the standard 
measures, we provide information on the so-
called consistency check of the ensemble (SZ03, 
D04).  In simple terms, this states that the EnKF 
technique is optimal if the sum of the specified 
observation error variance and the ensemble 
variance approaches the mean squared error 
when averaged over all observations at a given 
time.  The consistency check is shown as a ratio 
of the total variance to the mean squared error; a 
value approaching one indicates a well-
configured ensemble.  

 
The 90-minute assimilation of KDDC data 

starting at 2300 UTC produces an analysis that 
significantly improves the rms compared to BASE 
for both radial velocity and reflectivity especially 
(Figs. 4 and 5), even though the storms are not 
introduced at their exact locations in the CNTL 
experiment.  This is indicative of the positive 
covariances between reflectivity and vertical 
motion that develop relatively quickly, which allow 
the EnKF procedure to develop the storms in the 
correct locations faster than simply placing warm 
bubbles at the storm locations periodically.  Also 
note that the CNTL assimilation experiment is 
well configured in terms of reproducing the 
reflectivity fields as the consistency check 
approaches one after about 70 minutes of 
assimilation.  However, the consistency check is 
significantly lower for the radial velocity, 
indicating a lack of spread or that the assumed 
observational error of 2.0 m s-1 is too small. 
 
c. Sensitivity experiments 
 

An important consideration in EnKF 
applications is the number of grid points to 
update and the weighting applied to the updates.  
Typically an elliptical influence region is specified 
around the observation location with a functional 
form described by Gaspari and Cohn (1999).  As 
stated before, the update of a given model 
variable is proportional to the covariance 
between the model’s representation of the 
observation and the nearby model variables.  
This influence region, or localization as it is often 
termed, defines which model variables are 
nearby, i.e, the covariance that is used to update 
the model variables is computed using all grid 
points inside this influence region.  However, the 
covariance is scaled according to the distance of 
the grid point from the observation location. This 
scaling decreases smoothly from 1 at the 
observation location to 0 at the edge of the 
influence region.  The CNTL experiment uses a 
region with a horizontal radius of 10 km and a 
vertical radius of 5 km.  However, the optimal 
way to define this region for storm-scale 



applications has yet to be determined.  
Therefore, we also examine the sensitivity and 
implications of varying both the size of this region 
and the number of grid points that are updated 
within this region. 
 

We first examine the sensitivity of the results 
to the choice of horizontal localization.  Using a 
value of both 20 km and 5 km (versus the 10 km 
used in the CNTL experiment) does not 
significantly alter the overall statistical behavior 
(Fig. 6).  This is confirmed by comparing the 
reflectivity and radial velocity structures between 
these two runs and the CNTL experiment (not 
shown).  The rms is slightly worse for the 20 km 
experiment, but the most significant difference is 
in the spread, with an increase (decrease) in the 
localization radius causing a decrease (increase) 
in the spread.  This suggests the localization 
radius may be a simple way to tune the ensemble 
to achieve the proper spread, at least for the 
observed variable.  Additionally, the fact that the 
analysis of the storms does not change 
significantly with a change in the localization 
raises the question of the significance of the 
covariances, i.e., this raises the question, how 
often are we adjusting the model to noise? This 
could have important implications for the practical 
application and understanding the behavior of the 
EnKF technique. 

 
We examine this behavior in several 

experiments that hold the horizontal localization 
threshold at 10 km, but only update the model 
variables if the covariance is above a certain 
threshold (we use correlation to define the 
threshold).  We performed eight experiments in 
which we vary this threshold from 0.1 to 0.8 in 
increments of 0.1.  For example, for an 
experiment with a correlation threshold of 0.2, 
only the model variables within the localization 
radius that are linearly correlated to the 
observation type at greater than or equal to 0.2 
are adjusted. 

 
 The experiments with a threshold of 0.2 

(COR2), 0.4 (COR4), 0.6 (COR6), and 0.8 
(COR6) are examined in Figs. 7-9.  As the 
correlation threshold increases, the average 
number of grid points that get adjusted decreases 
exponentially.  In particular, the number of grid 
points adjusted in experiment COR6 is generally 
a factor of 10 less than the number of grid points 
adjusted in experiment COR2 (Fig. 7).  It is 
interesting then to see that the differences in the 
reflectivity analyses between these two 
simulations are negligible (c.f. figs. 8 and 9).  
Differences in most of the non-observed 
variables between the CNTL run and COR2 also 
are negligible. Additionally, the structure and 
magnitude of the updrafts and downdrafts do not 
change substantially until the threshold increases 

to about 0.5.  However, significant differences in 
the surface perturbation potential temperature 
and water vapor fields can be found once the 
threshold increases to 0.3-0.4 (not shown).  In 
general, the maximum deficits and the spatial 
coverage of these perturbations decrease by 20-
50% as the threshold increases from 0.2 to 0.6.  
Without detailed observations, it isn’t clear which 
of these ensembles are performing best.  Figure 
3 shows that an ensemble that decreases the 
drying at the surface underneath the convection 
may be more realistic and, therefore, the COR4 
and COR6 experiments may be better.  However 
these runs also have a warmer cold pool, which 
was perhaps too warm to begin with (see Fig. 3, 
bottom left panel).  Nonetheless, these results 
serve to show that simply changing how the 
covariances are defined can make large 
differences in the interpretation of the results and 
the retrieval of the non-observed variables.  
Although more work is needed, an encouraging 
sign is that using a lower threshold of 0.2-0.3 
seems to make negligible differences in the 
structure, location, and magnitude of the storm-
scale features, which can allow a substantial 
decrease in computational time. 
 
6. SUMMARY AND FUTURE WORK 
 

This study examines the utility of storm-scale 
EnKF data assimilation applied to a developing 
MCS.  It is not clear how a technique that is 
optimal for Gaussian statistics will perform in 
such a highly nonlinear convective scenario.  
Results show that the EnKF appears as 
promising in its application to mixed mode and 
complex convective events as it does to isolated 
supercells (D04).  The technique requires about 
30-40 minutes of reflectivity and radial velocity 
data (about 5-6 volume scans) to accurately 
reproduce the storm-scale structure of the 
developing MCS.  A problem found in past 
studies of storm-scale EnKF that spread is often 
deficient (SZ03), does not appear to be as much 
of a problem in this case, as the sum of the 
specified observation error variance and the 
ensemble variance approaches the mean 
squared error for the control simulation. 

 
Sensitivity studies show, however, that the 

ensemble spread and the magnitude and 
structure of the non-observed variables can be 
modified significantly simply by changing how the 
localization is defined and the level of correlation 
allowed in the EnKF update step.  Research is 
ongoing to further quantify these differences and 
to work toward understanding the structure of the 
covariances. 

 
 
 
 



6. REFERENCES 
 
Anderson, J. L., 2001: An ensemble adjustment 

filter for data assimilation. Mon. Wea. Rev., 
129, 2884-2903. 

Bryan, G. H., J.C. Wyngaard, and J.M. Fritsch, 
2003: Resolution requirements for the 
simulation of deep moist convection. Mon. 
Wea. Rev., 131, 2394–2416. 

Caya, A., J. Sun, and C. Snyder, 2005: A 
comparison between the 4DVAR and the 
Ensemble Kalman Filter Technique for Radar 
Data Assimilation.  Mon. Wea. Rev., 133, 
3081-3094. 

Coniglio, M.C., D.J. Stensrud, and L.J. Wicker, 
2006: Effects of upper-level shear on the 
structure and maintenance of strong quasi-
linear mesoscale convective systems.  J. 
Atmos. Sci., 63, 1231-1252. 

Dowell, D.C., F. Zhang, L.J. Wicker, C. Snyder, 
and N.A. Crook, 2004: Wind and temperature 
retrievals in the 17 May 1981 Arcadia, 
Oklahoma, supercell: Ensemble Kalman filter 
experiments.  Mon. Wea. Rev., 132, 1982-
2005. 

Evensen, G., 1994: Sequential data assimilation 
with a nonlinear quasi-geostrophic model using 
Monte Carlo methods to forecast error 
statistics.  J. Geophys. Res., 99 (C5), 10 143-
10 162. 

Gaspari, G., and S.E. Cohn, 1999: Construction 
of correlation functions in two and three 
dimensions.  Quart J. Roy. Atmos. Sci., 125, 
723-757. 

Johns R.H., and W. D. Hirt, 1987:  Derechos: 
Widespread Convectively Induced Windstorms. 
Wea. Forecasting, 2, 32-48. 

 
Kain. J.S., S.J. Weiss, M.E. Baldwin, G.W. 

Carbin, D. Bright, J.J. Levit, and J.A. Hart, 
2005: Evaluating high-resolution configurations 
of the WRF model that are used to forecast 
severe convective weather: The 2005 
SPC/NSSL Spring Experiment.  Preprints, 21st 
Conf. on Weather Analysis and Forecasting, 
Amer. Meteor. Soc., Washington, D.C. paper 
2A.5. 

 
Snyder, C., and F. Zhang, 2003: Assimilation of 

SImulated Doppler Radar Observations with an 
Ensemble Kalman Filter.  Mon. Wea. Rev., 
131, 1663-1677. 

 
Tong, M. and M. Xue, 2005: Ensemble Kalman 

Filter Assimilation of Doppler Radar Data with 
a Compressible Nonhydrostatic Model: OSS 
Experiments.  Mon. Wea. Rev., 133, 1789-
1807. 

 
Weisman M.L., Skamarock, W. C., Klemp, J. B. 

1997: The resolution dependence of explicitly 
modeled convective systems. Mon. Wea,r 
Rev., 125, 527–548. 

 
 
 
 

 
 

 

 
 



  

 
Fig. 1.  RUC model sounding near Buffalo, OK valid at 2300 UTC 16 June 2005.  Winds are in knots. 



 

 
 

Fig. 2.  A comparison of the observed 1.3°  reflectivity from KDDC (leftmost column), the ensemble 
mean reflectivity from the control assimilation experiment (middle column), and the reflectivity from 
the baseline experiment (rightmost column) at 20 minutes (a-c), 40 min (d-f), 60 min (g-i), and 80 min 
(j-l) into the simulations.  The location of the KDDC radar is indicated in 2a.  The cells circled in d-e 
and g-h are discussed in the text.  The model reflectivity is displayed on a conical surface that 
emulates a 1.3°  scan from KDDC. 

 



 
Fig. 3.  A comparison of the observed and modeled conditions at the Oklahoma Mesonet site at 
Buffalo, OK from 2300 UTC on 16 June to 0030 UTC on 17 June.  Observations are indicated by the 
red line for the 10 m u wind component (m s-1, upper left panel), 10 m v wind component (m s-1, 
upper right panel), 2 m temperature (C, bottom left panel), and 2 m dewpoint (C, bottom right panel).  
The thin blue line represents the ensemble mean and the surrounding blue shading represents the 
spread.  Model values are at the lowest model level (125 m). 

 

 

 

 

 

 

 



 
 

Fig. 4.  Statistical evaluation of the BASE and CNTL experiments for radial velocity.  The 
independent observations from KVNX are used as truth.



 

 
 

Fig. 5.  Statistical evaluation of the BASE and CNTL experiments for radial velocity.  The 
independent observations from KVNX are used as truth.



 

 

 
 
Fig. 6.  Statistical evaluation of the CNTL (red), 20 km (blue), and 5 km (black) localization 
experiments for (a) radial velocity and (b) reflectivity.  The independent observations from KVNX are 
used as truth. 
 
 



 
Fig. 7. Average number of grid points adjusted over the 90-minute assimilation period for each 
model variable (along x-axis) within the localization radius for the correlation threshold experiments 
(red=”cor2”, grey=”cor4”, blue=”cor6”, green=”cor8”).  Top panel is for radial velocity observations; 
bottom panel is for reflectivity observations.  U, V, and W are the wind components, TH is 
perturbation potential temperature, QV, QR, QC, QI, QH, and QS are the water vapor, rainwater, cloud 
water, ice, hail, and snow mixing ratios, respectively. 
 



 
Fig. 8. As in Fig. 2, but for the cor2 and cor4 assimilation experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Fig. 9. As in Fig. 2, but for the cor6 and cor8 assimilation experiments. 
 

 


