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1. Introduction  *

A problem with the Ensemble Kalman Filter (EnKF) is 
filter divergence.  Filter divergence occurs when the 
covariances specified in the filter are inconsistent with 
their true values (Maybeck, 1979).  Since the EnKF 
approximates forecast covariances based on a finite 
sample, filter divergence is unavoidable in the EnKF.  
One type of filter divergence occurs when the 
covariances are underestimated and the filter weights 
the first guess too heavily.  Two methods for avoiding 
filter divergence are covariance inflation (Anderson and 
Anderson, 1999) and localization (Hamill et al., 2001; 
Houtekamer and Mitchell, 2001).  Covariance inflation 
attempts to avoid filter divergence by simply inflating 
the covariance of the ensemble.   However, if only 
covariance inflation is applied, then it is found that 
filter divergence still occurs if the ensemble size is 
sufficiently small.   This result may be understood as 
follows.  The full model space can be split into two 
subspaces: the space spanned by the ensemble, which 
we call the ensemble space, and the complement, which 
we call the null space.  Generally for atmospheric 
applications, the ensemble size is less than the model 
dimension, so that the ensemble does not span the full 
model space. Specifically, there is always a null space 
in atmospheric applications.  The traditional EnKF 
updates only those vectors in the ensemble space.  It 
follows that vectors in the null space are not updated, 
which is equivalent to assuming that the forecast 
covariance of the null space vectors vanishes.  Thus, no 
matter how much inflation is applied, this inflation only 
influences the ensemble space, leaving the variances in 
the null space zero and hence underestimated.  

Application of covariance localization might 
avoid the above problems because it changes the rank 
of the forecast covariance, and in particular it reduces 
or even eliminates the null space.  Nevertheless, it is 
found empirically that covariance localization alone is 
not adequate to avoid filter divergence, and most 
applications of covariance localization also apply 
covariance inflation.  Furthermore, both covariance 
inflation and covariance localization involve tunable 
parameters whose values are not always well known.  

                                                
* Corresponding author address: Xiaosong Yang, Center of Ocean-
Land-Atmosphere Studies, Calverton, MD, 20705;e-mail: 
xyang@cola.iges.org

In this work we explore an alternative method 
for avoiding filter divergence.  The basic idea is to 
explicitly model the covariances in the null space.  In 
one extreme, one could argue that the filter has no 
information about the covariances in the null space, 
since the forecast ensemble is orthogonal to it.  
Therefore, one could assume that the covariances in the 
null space should be infinite, corresponding to the limit 
of complete lack of knowledge.  Consistent with this 
lack of knowledge, we assume that the vectors in the 
null space are uncorrelated with the vectors in the 
ensemble space.  We call the resulting filter the 
Diffusive Ensemble Kalman Filter (DEnKF).  

In the numerical experiments reported below, 
we compare the performance of the DEnKF with the 
traditional EnKF.  We find that the DEnKF vastly 
improves the divergence problem, but does not 
eliminate it.  Interestingly, the traditional EnKF with 
both covariance inflation and localization does seem to 
eliminate filter divergence.  This fact implies that the 
assumption of “complete lack of knowledge” is not 
appropriate.  But what other information is available 
about the null space?  In the absence of instantaneous 
information about the null space, the only other 
information available is its past history.  We explore an 
alternative approach in which the covariances in the 
null space equal the covariances of all previous 
ensembles.  

2. Experimental setup

The model used here is the Lorenz-96 model (Lorenz 
and Emanuel, 1998). It is a nonlinear model with a state 
vector dimension of 40. The consecutive model states 
are obtained by integrating the model forward with the 
time interval 0.05, and a fourth-order Runge-Kutta 
numerical method is applied at each model time step. 
The “truth” is one single integration of the model.  The 
observational data set was constructed by adding 
Gaussian white noise with zero mean and unit variance 
to the truth at each of the 40 grid points, thereby 
producing 40 “observations.” 

The traditional EnKF used here is the mean-preserving 
square-root Ensemble Kalman Filter of Evensen (2004) 
and Sakov et al. (2007). The ensemble size used in this 
study is 10, corresponding to the regime in which the 
ensemble size is much smaller than the model 
dimension. The covariance inflation for all experiments 
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in this study, when applied, is the adaptive covariance 
inflation algorithm proposed by Anderson (2007). The 
localization applied is the fifth order polynomial 
function of Gaspari and Cohn (1999) with half-width c, 
and c is a tuning parameter. In all experiments the filter 
errors are computed as the root mean square (RMS) of 
the difference between the analysis and the truth over
the 40 grid points and from model time steps 3000 to 
6000. 

The log likelihood function (LLF) can be used as an 
online detection of filter divergence. LLF can be 
written as:

       12 ( ) log(2 )N T
N NL N C z C z    ,     (1)

where N is the number of observations per time step,
is the matrix determinant operator, zN is the 
innovation vector, C is the covariance of zN and the 
superscript T is the matrix transpose operator 
(Schweppe, 1965). As noted by Maybeck (1979), the 
first term of the right hand side of Equation (1) is a 
slowly varying negative term independent of the 
innovations. For the Kalman Filter, the innovation 
sequence is a white Gaussian sequence with mean zero 
and covariance matrix:

             fC HP H R  ,               (2)

where H is the observation operator, Pf is the covariance 
of the forecast ensemble, and R is the observation error 
covariance (see Chapter 5 of Maybeck, 1979).  Thus the 

quadratic form 1T
N Nz C z  is distributed as the chi-

square with N degrees of freedom 2
N (see Result 4.7. 

of Johnson and Wichern 2002). For the purpose of 
detecting filter divergence, LLF can be simplified as:

     1( ) T
N NSL N z C z  .      (3)

The upper 99.5% threshold value for the chi-square 
distribution with 40 degrees of freedom 

is 2
40 (0.995) = 66.8. Accordingly, a filter divergence 

is declared when LLF is less than -66.8 more than 
99.5% of the time.  Otherwise, we say the filter 
converges. 

3. Comparison of Traditional and Diffusive EnKF

Figures 1a-d show a typical result for the truth, 
observation, forecast, and analysis by the traditional 
EnKF at one grid point in the Lorenz-96 model.  The 
corresponding LLF is shown in figs 2a-d (for a longer 
time period).  Inspection of fig. 2 shows that the filter 
converges only if both covariance inflation and 
localization are applied.  In cases when the filter 
diverges, the analysis is weighted too heavily toward

the model forecast, allowing the analysis to diverge 
from the observations.  Interestingly, the traditional 
EnKF with localization only still diverges (figs. 1c and 
2c) even though there is no null space.  

The results for the diffusive EnKF are shown in figs. 1e 
and 2e.  The figures show that the diffusive EnKF 
substantially improves the LLF, although technically
divergence still occurs by our criterion.  However, 
unlike the previous form of divergence, the divergence 
in this case arises because the analysis is weighted too 
heavily to the observations.  Indeed, the analysis reveals 
much more high frequency noise than the truth, owing 
to the white noise in the observations.  Perhaps this 
form of divergence is preferable to the other form of 
divergence in which the analysis rejects the 
observations.  Nevertheless, one can always improve 
the LLF by inflating the covariances.  Figs. 1f and 2f
show the result of applying inflation to the diffusive 
EnKF, which is to improve the LLF further.  

The diffusive EnKF can be interpreted as an extreme 
example of inflation for the null space.  Yet, even with 
infinite covariances in the null space, the diffusive filter 
still diverged.  Similarly, in the traditional EnKF with 
localization, there is no null space, yet the filter still 
diverges.  Thus, an interesting conclusion from the 
above results is that the filter converges only when the 
covariance of both the ensemble space and the null 
space are inflated-- inflating just one subspace is not 
enough to avoid filter divergence. 

It should be noted that the above conclusion holds for 
our experimental set up with relatively small ensemble 
size (compared to the dimension of the system).  In 
cases with relatively larger ensemble size, the impact of 
the null space may not be as important.  To gain insight 
into this issue, we show in fig. 3 the performance of the 
traditional and diffusive EnKF, with inflation, as a 
function of ensemble size.  For the ensemble size 41, 
there is no null space, so the diffusive EnKF is identical 
to the traditional, and the values of RMS for the two 
filters are almost the same.  We see that the RMS for 
the traditional filter decreases dramatically and 
eventually the filter converges after 15 ensemble 
members.  This implies that inflation alone can allow 
the filter to converge if the ensemble size is sufficiently 
large. Equivalently, if the ensemble size is too small, 
then inflation alone is not enough to prevent filter 
divergence.  In practical atmospheric applications, the 
dimension of the state space exceeds 100,000 whereas 
typical ensembles sizes are less than 100, or 0.1% of the 
model dimension.  Therefore, ensemble size of 15 or 
more in the 40-variable Lorenz model is an unrealistic
regime for atmospheric applications.  Thus, for small 
ensemble sizes relative to the model dimension, the 
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Fig.1 Time series of the true solution, the model forecast, the analysis and the observation at one grid point for a) Traditional 
EnKF without inflation and localization, b) Traditional EnKF with inflation only, c) Traditional EnKF with localization only, d) 
Traditional EnKF with localization and inflation, e) Diffusive EnKF without inflation, f) Diffusive EnKF with inflation, g) Null 
space parameterization without inflation, and h) Null space parameterization with inflation.
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diffusive EnKF may be an attractive alternative to the 
traditional EnKF.  

Fig.2 Time series of the log likelihood function (LLF) for a) 
Traditional EnKF without inflation and localization, b) 
Traditional EnKF with inflation only, c) Traditional EnKF 
with localization only, and d) Traditional EnKF with 
localization and inflation, e) Diffusive EnKF without inflation, 
f) Diffusive EnKF with inflation, g) Null space 
parameterization without inflation, and h) Null space 
parameterization with inflation. Ensemble size is 10 for all 
experiments. Red line indicating the threshold value of LLF.  

Fig.3 The root square mean (RMS) of the difference between 
the true solution and the analysis as a function of ensemble 
size for the traditional EnKF with inflation (Blue bars) and the 
diffusive EnKF with inflation (Red bars). Results are 
averaged over the 3000 to 6000 assimilation time step. 

4. A parameterization for the null space covariance

The traditional and diffusive EnKFs define two extreme 
cases for representing the null space covariance: the 
traditional essentially treats the null space covariance as 
vanishing while the diffusive treats it as infinite.  The 
fact that the diffusive EnKF diverges implies that the 

assumption of “complete lack of knowledge” is not 
appropriate.  Furthermore, the fact that the traditional 
EnKF with localization and inflation converges implies 
that there must exist some information about the null 
space covariances from the available ensemble.  In the 
absence of instantaneous information about the null 
space, the only other information available is its past 
history.  We now consider an alternative approach in 
which the covariances in the null space equal the 

covariances of all previous ensembles.  Let f
clmP  be the 

average of all previous forecast covariances  Pf .  Then, 
we consider a new forecast covariance matrix defined 
as

          f f f
null clm nullP P U P U  ,         (4)

where Unull is the projection matrix to the null space.
f

clmP is the climatology of the model forecast error 

covariance. 

The rank of the above matrix increases with time; it will 
usually become full rank when the number of time steps 
exceeds the dimension of the model divided by the 
ensemble size.  One might also apply localization or the 
hybrid method of Wang et al. (2007) to increase the 
rank of the matrix, but here we show results only after 
3000 time steps, well after the above covariance 
becomes full rank.  The traditional EnKF is applied 

using the covariance 
fP to update the mean analysis, 

and using the covariance Pf from the forecast ensemble 
to update the analysis perturbations.  The results of 
applying this new filter with parameterized covariances 
in the null space are shown in figs. 1g and figs. 2g.  We 
see that the filter still diverges, and the sense of the 
divergence is that the analysis is weighted too heavily 
toward the forecast.  This suggests that the forecast 
covariances are underestimated and that the filter could 
benefit by inflating the forecast covariances.  Figs. 1h 
and 2h show the results of applying inflation to the new 
filter, which reveals that the filter with inflation 
converges.  

Recall that the best filter results were obtained from the 
traditional EnKF with both covariance localization and 
inflation.  It is interesting to compare this best filter 
with the above filter with parameterized null space 
covariances. However, covariance localization involves 
a tunable parameter, namely the half-width of the 
localization.  Fig. 4 shows the RMS as a function of the 
localization half-width for the two filters.  Note that the
RMS of the filter with parameterized null space 
covariances does not depend on a half-width, but for 
comparison purposes we plot its constant value at each 
half-width.  The figure shows that the two filters have 
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only marginally different RMS values, although the 
extra tuning parameter in the traditional EnKF allows it 
to have slightly better performance, provided that the 
truth is known.  We conclude that use of parameterized 
covariances in the null space can give filter 
performance comparable to the best tuned traditional 
EnKF with inflation and localization.  

Fig.4 The root square mean (RMS) of the difference between 
the true solution and the analysis as a function of Gaspari-
Cohn localization half-width for the traditional EnKF with 
inflation and localization (Blue bars) and the null space 
covariance parameterized (NSCP) EnKF with inflation (Red 
bars). Ensemble size is 10 for both filters. Results are 
averaged over the 3000 to 6000 assimilation time step. 

5. Conclusions
In this study, the diffusive EnKF is proposed.  This 
filter assumes that the covariances in the space 
complementary to the ensemble are infinite, 
corresponding to “complete lack of knowledge.”  
Numerical experiments using small ensemble sizes 
demonstrate that the diffusive EnKF dramatically 
improves, but does not eliminate, filter divergence.  In 
fact, the diffusive EnKF exhibits divergence due to 
weighting too heavily toward the observations, which in 
practice may be preferable to divergence due to 
weighting too heavily to the forecast.  We believe that 
the diffusive EnKF also has educational value in 
elucidating the role of the null space in filter divergence.  
In particular, the fact that the diffusive filter still
diverges, and the traditional filter with inflation and 
localization converges, implies that the assumption of 
“complete lack of knowledge” is inappropriate.  These 
considerations lead us to explore an alternative 
approach in which the covariances in the null space 
equal the covariances of all previous ensembles.  This 
latter filter still diverged, but it converged when 
covariance inflation was applied.  Furthermore, the 
performance of this filter was comparable to the best 
performance from the traditional EnKF with tuned 
inflation and localization, even though the new filter 
contains no tunable parameters.  
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