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1.   INTRODUCTION 
 

Ensemble modeling is proving to be a viable 
approach to addressing uncertainty in numerical 
weather prediction.  Ensemble modeling creates a 
distribution of potential forecast solutions by varying 
the initial conditions, boundary conditions, model 
physics, parameterization schemes, and the models 
themselves.  Ensemble models are run operationally at 
several meteorological centers, including the National 
Centers for Environmental Prediction (NCEP) and the 
European Centre for Medium-Range Weather Forecasts 
(ECWMF). 

Recent research has elucidated methods for 
optimally combining the forecasts from the set of 
ensemble member solutions to create a single 
deterministic consensus forecast.  These methods 
include using the simple ensemble mean, linear 
regression / Ensemble Model Output Statistics (EMOS) 
(Gneiting et al., 2005), performance-based metrics 
(Woodcock and Engel, 2005), and Bayesian Model 
Averaging (BMA) (Raftery et al., 2005).   In its 
simplest expression, the consensus forecast can be 
stated as a linear combination of individual ensemble 
member forecasts plus a bias correction term. The 
weight of a member in the combination typically is 
determined by considering the performance of the 
member relative to the other ensemble members over 
some window of time.  Most methods employ a sliding 
window of dates that directly precede the forecast date 
whose length w is between one week and two months; 
Eckel and Mass (2005) prefer 14 days but Gneiting et 
al. (2005) prefer 40 days.  Thus, the underlying 
assumption is that if member A performs relatively 
better than member B on days n-w to n, then member A 
can be expected to continue to perform better than 
member B on day n+1. 

Forecasters have long understood that model 
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performance is linked to the characteristics of the 
weather situation being forecast (Fritsch et al., 2000).  
Forecasters frequently weight sources of information 
depending upon these weather characteristics (Roebber 
1998); for example, model A might be superior to 
model B when predicting heavy precipitation events. 
Although model output statistics (MOS) address the 
correlations between the predicted variable of interest 
and the other atmospheric fields, it does not relate the 
fields to the relative predictability of the variable 
amongst different models or ensemble members. 
Clustering, the process through which similar elements 
of a dataset are grouped together, can be used to 
separate a time series of model forecasts into weather 
situations or regimes.  Here, regimes are defined 
broadly as any configuration of atmospheric variable 
fields such that membership in a specific regime can be 
determined objectively.  

The logical amalgamation of the ideas of consensus 
ensemble forecasting and weather regimes is explored 
in this paper. The relative performance of ensemble 
members should be linked to the weather regime 
present; different relative performances imply that 
varying the weights of ensemble members depending 
upon regimes should produce a more accurate 
consensus forecast.  A hypothesis can thus be stated: 
clustering forecast dates by weather regime prior to 
assigning weights to ensemble members results in 
reduced forecast error for a consensus deterministic 
forecast.  The regime-independent methods serve as 
benchmarks with which to judge the success of the new 
post-processing technique.   

 
2.   ENSEMBLE MODEL AND VERIFICATION 
DATA 

 
The University of Washington Mesoscale 

Ensemble (UWME+) (Eckel and Mass, 2005) is used as 
the source of ensemble forecasts for this project. The 
system is based upon the 5th-generation MM5 
mesoscale model and contains eight members.  Each 
member has different initial conditions as well as 
different physical / parameterization schemes. This 
project uses data from a nested 12-km-spaced grid 
roughly centered over the states of Washington and 

 - 1 - 

mailto:haupts2@asme.org


Oregon. Table 1 summarizes the data downloaded from 
the UWME archives. 

 
Table 1: UWME+ dataset summary. 

Number of Members 8 members 
Temporal Domain 12 months (2005-09-01 – 

2006-08-30) 
Initialization Time(s) 00 UTC (4 pm PST) 
Forecast Time(s) +48 hours 
Domain Size 12-km-spaced nested grid 

(Pacific Northwest) 
Forecast Variable(s) 2 m temperature (Tsfc) 

 
To provide a relatively simple methodological test 

bed, point data from Portland, OR (latitude 45°35’ N, 
longitude 122°36’ W) are extracted from the UWME+ 
ensemble forecast dataset.  Specifically, 2-m 
temperature data are linearly interpolated 

between the two closest spatial grid points to Portland, 
OR to create two time series representing model 
forecasts from each ensemble member extending for the 
period from September 1, 2005 to August 31, 2006. 

Next, ensemble model forecasts are compared with 
the actual state of the atmosphere – a verification 
dataset.  Surface temperature verifications were thus 
taken from the Portland airport Automated Surface 
Observing System (ASOS) reports at 00Z each day, and 
collected into a time series extending from September 
1, 2005 to August 31, 2006. 

Upon comparing the ensemble forecasts with 
observations, the mean absolute error (MAE) was 2.5 
deg C, with a bias of -0.50 deg C.  Applying bias 
correction to each ensemble member resulted in a new 
MAE of 2.2 deg C, an improvement of more than 10%. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Pattern Vector 1 Pattern Vector 2 

   Pattern Vector 3 Pattern Vector 4  

Figure 1: First Four Obliquely Rotated Eigenvectors 
from PCA of MSLP, 2005-09-01 – 2006-08-31 
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3.   ATMOSPHERIC WEATHER REGIMES 
 
The North American Regional Reanalysis (NARR) 

(Messinger et al., 2006) provides a rich dataset from 
which to characterize atmospheric regimes.  Data for 00 
UTC each day are obtained for the same 12-month time 
period (2005-09-01 – 2006-08-30) as the UWME+ 
ensembles.  For a synoptic domain on the order of 1000 
x 1000 km consisting of the Pacific states and the 
adjacent ocean, the fields include 500-mb heights 
(h500) to represent mid-level atmospheric flow, mean 
sea level pressure (MSLP), and specific humidity 
(q700) as a proxy for mid-level cloud cover.  For a 
mesoscale domain on the order of 300 x 300 km, the 
fields include the u-component and v-component of the 
wind at 850 mb and 925 mb (uv850 and uv925).  

Principal Component Analysis (PCA) is a 
technique for reducing the dimensionality of a dataset 
while capturing the most important modes of variability 
(Wilks 2006).  PCA is applied to each of the five 
NARR data fields individually. This analysis produces 
pattern vectors (eigenvectors) and a time series of 
amplitudes called principal components (PCs) for each 
data field.  In order to interpret the pattern vectors 
physically and to avoid obtaining Buell patterns, the 

eigenvectors need to be rotated (Richman 1986).  Buell 
patterns are characteristic of the domain shape, and can 
appear regardless of the field under consideration – 
even PCs of random data can contain such patterns.  
Here, rotation is accomplished using the promax 
(oblique) technique, retaining only the first four 
eigenvectors.  On average, the first four pattern vectors 
capture 88 % of the variance of the data. These pattern 
vectors for MSLP are plotted in Figure 1.  

The first pattern vector can be interpreted as the 
Aleutian Low with a high pressure area west of 
California; the second can be interpreted as a trough of 
low pressure offshore of and roughly parallel to the 
Pacific coast. A linear combination of these four 
patterns describes the actual atmospheric state on a 
given day.  These PCs together can characterize 
atmospheric regimes, and provide inputs to a regime-
dependent consensus forecast.  

 
4. ENSEMBLE MODEL CONSENSUS 
FORECASTS 

 
A consensus forecast is some combination of 

individual member forecasts, with the goal that over the 
long term, the consensus forecasts are more accurate 

Ensemble Consensus Skill for N -Day Performance Weighting
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Figure 2: Ensemble Consensus Skill for N-Day Performance Weighting  
using various values for w, the performance window size (window is composed of previous days). 

 - 3 - 



than any of the individual member forecasts.  If the 
forecast combination is linear, it can be expressed in the 
form of:  

∑
=

=
n

i
ii XaX

1

*

 
where X* is the consensus forecast, n is the number of 
ensemble members, Xi are the individual bias-corrected 
ensemble member forecasts, and ai are ensemble 
member weights.  The goal of this work is to select 
ensemble member weights ai so that X* is the optimal 
consensus forecast.  Here, the optimal consensus 
forecast has the least MAE – the absolute value of a 
forecast minus an observation.   

The simplest consensus forecast is the ensemble 
mean, where ai are equal for all i such that their sum is 
one (ai = 1 / n, where n is the number of ensemble 
members); this technique is also referred to as the 
equal-weighted average.  An improved choice of the 
ensemble member weights, ai, can be obtained by 
considering the relative performance of ensemble 
members.  Performance-weighted averages (PWA) use 
the inverse of the MAE of that ensemble member over a 
window of forecasts W to derive raw weights 
(Woodcock and Engel, 2005).  Thus ensemble members 
that are performing the best (have the smallest MAE) 
are given the largest weighting in the linear 
combination. The weights are then normalized so that 
their sum is equal to one.  The formula for calculating 
an ensemble member weight is given as follows: 

∑
=

−−=
n

j
jii ppa

1

11          (2) 

Where pi is a performance measure (here, MAE) for 
ensemble member i, and n is the number of ensemble 
members. 

Consensus forecast error can be reduced based 
upon a clever selection of the performance window, W.  
Here, W refers to a set of dates under which 
performance is evaluated; w refers to the number of 
forecast dates in W, typically in the context of the 
previous w days.  The simplest choice of W is the entire 
set of forecasts from the dependent dataset, henceforth 
referred to as Wdep.  Operationally, other studies employ 
a sliding window of dates that directly precede the date 
that the forecast is issued.   Eckel and Mass (2005) 
prefer 14 days (W14) but Gneiting et al. (2005) prefer 40 
days for the duration, w, of the window.  Figure 2 
reveals the performance of N-day performance 
weighting for various performance window sizes (w).  
Here, the optimum window size was 10 days, with 14 
days having slightly less than minimal MAE. 

 Consensus forecasting using performance-
weighted averaging with both Wdep and W14 offers only 
a slight improvement (1.4%) over equal-weighted 

forecast MAE.  This 1.4% improvement serves as a 
benchmark for the performance of the regime-
dependent methods shown below; they should be 
considered successful only if they can produce a greater 
percent improvement. The goal of the clustering 
methods discussed in the next section is to identify 
patterns in the distribution of optimal weights so that a 
performance-weighted average applied to independent 
data will reveal a more substantial improvement.  The 
purpose of the clustering is thus an intelligent selection 
of W in order to minimize MAE. 

(1) 

 
5.   REGIME-BASED CONSENSUS FORECASTS 
 

The process known as clustering divides a dataset 
into a number of subsets or groups called clusters.  The 
goal of traditional clustering methods, such as K-
means, is to group similar elements together while 
separating dissimilar ones (Wilks 2006).  Similarity is 
determined based upon some distance formula between 
data points.  Here, each cluster is a group of forecast 
dates with its own Wclstr, the window of forecast dates 
used for performance-weighted averaging.  The goal is 
to find clusters such that the sum of the MAEs of the 
clusters (weighted by the number of members in the 
cluster) is minimized.  Examination of the scatter plots 
of the principal components did not reveal any readily 
discernable patterns; simple structure (Richman 1986) 
was not attained during the PC rotations.  Therefore it is 
likely that traditional clustering methods would not be 
appropriate for characterizing patterns in this dataset.  
Here the goal is not merely to find patterns in the data, 
but to minimize MAE.  Thus a new method is presented 
that uses a genetic algorithm to attain that goal. 

Consider a simple cluster rule R1: given a single 
PC (here, a time series of data points x1), place all x1 > r 
into the first cluster, all x1 ≤ r into a second.  Thus r is a 
boundary that subdivides the phase space of the PC.  A 
second cluster rule R2 can be applied to another PC.  
Together, these rules can divide the set of forecast dates 
into up to four clusters.  If both rules R1 and R2 apply 
to the same PC x1, only three clusters are produced.  In 
general, b unique boundaries produce up to 2b clusters. 

The boundaries (cluster rules) that minimize MAE 
can be determined using a genetic algorithm (GA).  A 
genetic algorithm is a technique for optimization that  
intelligently samples a large portion of the solution 
space before eventually converging upon the optimum 
location (Haupt and Haupt, 2004).  A GA begins with a 
random pool of possible solutions called chromosomes.  
As in biological evolution, the solution pool evolves.  
Less fit members are removed, and offspring of the 
more fit members take their place. Here, the fitness of a 
chromosome (each chromosome specifies a cluster rule) 
is determined by the total MAE of all the clusters using 
PWA, with each individual cluster MAE rescaled by 
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the size of the cluster.    Crossover blends information 
from different solutions, while mutations of the 
solutions prevent the gene pool from being trapped in 
local minima.  This GA simultaneously optimizes 
several parameters, including the selection of which PC 
to apply a cluster boundary (a discrete variable) and the 
exact value r of the boundary (a continuous variable). 
The GA can select from 20 predictors (5 atmospheric 
fields times 4 PCs each). The number of boundaries is 
determined before the GA is run, and is repeated for a 
varying number of boundaries (1-5) which correspond 
to between 2 and 32 clusters.  The 100 benchmark runs 
used 500 GA iterations with 20 chromosomes, a 
mutation rate of 0.25, and a survival rate of 0.5.  Once 
optimal regimes are defined by the GA, performance-
weighted averaging using optimal weights for each 
regime (cluster) is applied to generate consensus 
forecasts. 

An alternative technique for regime-based 
consensus forecasts uses multivariate linear regression 
for considering model performance under various 
weather regimes.  Whereas clustering divides a dataset 
into discrete groups, regression maintains the 
continuous nature of the principal components.  With 

multivariate linear regression predicts the errors 
(MAEs) of each ensemble member. These predicted 
errors are used to calculate the performance weights 
using the PWA equation. Here, the performance 
window consists of the set of predicted errors according 
to the regression equation.  Although this regression 
approach uses atmospheric regime information (the 
PCs), it does not explicitly classify a given forecast date 
as belonging to a specific regime as in the clustering 
approach. 

 

the 20 atmospheric PCs as inputs, forward screening 

6.   DISCUSSION 

igure 3 compares the performance of several 
met

 
used

Operationally, this would assume that the centroid of 

 
F

hods for generating consensus forecasts. Using the 
principles of cross-validation, the methods were trained 
on the dependent dataset (243 days), and applied to an 
independent dataset (122 days).  To mitigate the 
random fluctuations of arbitrarily dividing the data into 
independent and dependent sets, these methods were 
simulated 50 times with different dataset divisions.   

  For regime-dependent methods, these simulations
 PCs of NARR atmospheric fields for the same 

time and date that the forecasts are valid.  

Ensemble Consensus Skill for Various Methods 
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Figure 3: Ensemble Consensus Skill for various performance-weighting schemes on an independent dataset. 
They include a 10-day sliding window (the optimal sliding window size); regime-based clustering using a 

genetic algorithm with 1,2,3, and 4 boundaries (2,4,8,16 clusters); and regime regression. 
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7.   CONCLUSIONS 
 

niques for the creation of a 
s forecast from ensemble model 

utput.  Figure 4 presents a flow chart of the methods 
used

time – the “perfect prog” assumption.  
Predicting ensemble member forecast errors based 

upon linear regression of atmospheric regimes is the 
best method for reducing the MAE of 

ensus forecasts, presenting a 6 % improvement on 
independent data.  Both regime clustering with a 
genetic algorithm and regime regression of principal 
components have less MAE than the best of the regime-
independent methods.  This result demonstrates the 
importance of considering atmospheric regime 
information when generating optimal ensemble model 
consensus forecasts. 

This paper analyzes the relative merits of several 
post-processing tech
deterministic consensu
o

 in this study.  The test-bed consists of a 12-month 
time series of UWME+ ensemble forecasts for surface 
temperature at Portland, OR.  One technique uses PCs 
of other atmospheric fields to group the forecast dates 
into clusters; a genetic algorithm determines the 
optimum cluster rules with the goal of reducing MAE 
of the resulting consensus forecasts.  This technique 
reduces MAE below that of 14-day moving window 

Performance
-Weighting 

PCA 

Clusters 

PCs 

Regression 
GA 

§ 2 § 3 

§ 4 

§ 5 

Figure 4: Flow chart of this paper’s methodology.  Rec
arrows denote dependencies.  The section numbers f

tangles denote datasets, ovals denote procedures, and 
or each portion of the technique are noted as well. 
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performance weighted averaging.  Predicting ensemble 
member forecast errors using multivariate linear 
regression of atmospheric regime principal components 
had the greatest success in reducing PWA MAE. 

Regime-based consensus forecasts show promise 
for use in operational forecasting.  Additional studies, 
however, need to confirm their superior performance on 
longer datasets and with other locations.  An 
inde

ck on this paper. 
Thanks also are due to Ben Root, Rich Grumm, 
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pendent dataset from a different year would ensure 
that no autocorrelations in weather patterns are 
artificially inflating scores.  Although currently used for 
deterministic forecasts, the clustering paradigm can be 
applied eventually to probabilistic forecasting such as 
Bayesian Model Averaging (Raftery et al., 2005).  
Tuning of the genetic algorithm parameters, as well as 
generalizing the cluster rules using Fisher’s Linear 
Discriminant (Wilks 2006), may result in improved 
performance of the GA clustering technique.   Finally, 
the technique should be expanded to a grid-based 
forecasting domain, and include several forecast 
variables simultaneously.  
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