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1. INTRODUCTION 

One of the long-standing problems in meteorology 
is the estimation of the three-dimensional wind and 
thermodynamic fields for convective-scale numerical 
forecasting.  At this scale, Doppler radars are excellent 
sources of volumetric information and, naturally, much 
research has been focused on the retrieval of state 
variables from Doppler radar observations. 

Several factors make the use of Doppler radar 
observations for convective-scale retrieval a very 
challenging task.  First and foremost, the absence of 
balances like geostrophy between the wind and mass 
fields forces estimation schemes to rely solely on the 
dynamical information from the underlying numerical 
models, which causes the convective-scale estimation 
processes to be  much more prone to systematic errors 
compared to their larger-scale counterparts.  Second, 
Doppler radars only observe a limited subset of the 
state of the atmosphere through the aggregate 
reflectivity measurements for which numerical models 
have to rely on parameterizations of microphysical 
processes to establish relationships between “observed” 
moist variables and other unobserved dynamical 
variables.  Due to large known systematic errors 
associated with microphysical parameterizations 
(Stoelinga et al. 2003), the reliability of the model-
produced covariance information between such 
observed and unobserved variables becomes 
questionable.  Furthermore, strong nonlinearities 
associated with moist variables and precipitation 
frequently violate the Gaussian assumptions underlying 
many of the estimation techniques available.  Finally, in 
addition to instrument-related errors, Doppler radar 
observations contain significant representativeness 
errors. Although this mainly arises from the resolution 
mismatches commonly seen between observations and 
models (typical convective-scale model horizontal 
resolutions are still on the order of a few kilometers, 
while Doppler radar along-beam resolutions are on the 
order of a few hundred meters and across-beam 
distances are even smaller very near the radar), 
contributions to reflectivity from non-modeled sources 
such as birds, insects, and ground clutter also add to 

the complexity of the representativeness problem. 
Over the past 30 years, various methods have been 

proposed for analyzing the convective-scale 
atmospheric state from Doppler radar observations.  
These range from purely kinematic considerations to 
sophisticated variational data assimilation schemes (see 
Dowell et al. [2004a] for a good historical discussion on 
such techniques).  While variational techniques, and 
especially the better-established state-of-the-art four-
dimensional variational assimilation (4DVAR), have 
demonstrated considerable success at estimating 
unobserved variables given Doppler radar observations 
(e.g., Sun 2005; Xiao et al. 2005; Weygandt et al. 2002; 
Gao et al. 1999; and Sun and Crook 1997), several 
factors associated with 4DVAR make its implementation 
to convective scales difficult.  Among these, the high 
cost of developing and maintaining an adjoint model and 
the need to include in the adjoint highly nonlinear 
microphysical processes, the necessity to employ 
tractable and typically idealized models of background 
error covariance matrices, and the difficulty of the cost 
function minimization in the absence of balance 
constraints are especially relevant for convective scales. 

Very recently, the ensemble Kalman filter (EnKF) 
has been proposed as an alternative data assimilation 
method for the assimilation of Doppler radar data using 
simulated observations (Snyder and Zhang 2003; Zhang 
et al. 2004).  First proposed by Evensen (1994) for 
geophysical applications, the EnKF obtains the 
background covariance information from an ensemble of 
forecasts.  More specifically, an ensemble of forecasts 
is produced at predetermined analysis intervals, 
available observations at which are assimilated to 
produce the analysis state that becomes the initial 
conditions for the following forecast run.  This cycle is 
repeated sequentially in time.   As a result of its 
sequential nature and the affordability introduced by the 
sampling of covariance information, the ensemble 
approach to data assimilation naturally brings about the 
advantage of employing a flow-dependent background 
covariance matrix  Furthermore, when observation 
errors are uncorrelated, observations can be assimilated 
serially, making the EnKF algorithms very suitable for 
parallelization.  Finally, because the filter algorithm is 
sequential and serial in nature, its implementation and 
maintenance is quite straightforward and, except the 
forward operator code between the model and 
observation spaces, is independent of the underlying 
forecast model. 

The above-mentioned distinct differences of the 
EnKF in comparison to the 4DVAR make the EnKF an 
attractive alternative data assimilation method, as a 
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result of which, research on the EnKF has become very 
active in recent years, beginning with applications to 
global and synoptic scales.  At these scales, the 
implementation of the EnKF has today reached near-
operational status at the Canadian Meteorological 
Centre using data from conventional observation 
platforms (Houtekamer et al. 2005).  At convective 
scales, the feasibility of the EnKF for the assimilation of 
Doppler radar data has been first tested by Snyder and 
Zhang (2003) and then by Zhang et al. (2004) using 
simulated radial velocity observations.  Caya et al. 
(2005) again employed simulated Doppler radar 
observations to facilitate a comparison between the 
EnKF and the 4DVAR methods.  Tong and Xue (2005) 
tested the EnKF using a different cloud model utilizing a 
six-species ice microphysics scheme and assimilating 
both simulated radial velocity and reflectivity 
observations.  Meanwhile, the only real-data studies on 
the application of the EnKF to convective scales are 
Dowell et al. (2004a and 2004b), where both radial 
velocity and reflectivity observations are assimilated. 

Previous work on ensemble-based convective-
scale radar data assimilation has certain limitations.  
First and foremost, very limited research is carried out 
using real Doppler radar observations, whereas the 
feasibility of the EnKF is ultimately dependent upon its 
performance with real data where systematic model 
errors should play a role and could degrade results 
considerably.  As a result, investigation of such issues 
as spread deficiency and model error have been very 
limited.  Also, all of the previous work has been 
unanimously focused on supercell cases, generating the 
question of whether and how the EnKF’s performance 
would be different in atmospheric environments that 
support other types of convective systems.  Furthermore, 
use of clear-air reflectivity data has not at all been 
explored in the literature.  Variety in how the 
atmospheric state is initialized is another aspect that 
has received limited attention across the existing body 
of research on ensemble-based radar data assimilation.  
Ensemble initialization across previous work varies from 
randomly perturbed soundings to randomly placed 
bubbles, making it difficult to compare results among 
them.   

The present study seeks to address some of the 
above-mentioned shortcomings in the previous work on 
the EnKF for radar data assimilation in order to draw 
more generalized conclusions for its performance at 
convective scales.  Our primary goal is to demonstrate 
the EnKF’s performance across a variety of cases with 
different convective characteristics.  We chose to use 
the 8 May 2003 case supercell case near Oklahoma 
City as a benchmark to which we can compare our 
results from other cases.  Two other cases, a multicell 
case of 8 May 2005 in central Oklahoma and a bow 
echo case of 15 June 2002 in western Kansas 
accompany the 8 May 2003 supercell case.  Another 
goal is to obtain comparable results across cases by 
utilizing similar overall model, ensemble, and 
assimilation properties.  The numerical model used in 
this study is the Weather Research and Forecasting 
(WRF) model in its idealized mode.  As for data 
assimilation, the EnKF implementation of the Data 
Assimilation Research Testbed (DART) is employed. 

2. DESCRIPTION OF THE CASES 

Several criteria have been a factor in selecting the 
cases for this study.  While we wanted to have a set of 
cases representing a variety of convective behavior, 
nevertheless, the events we chose all occurred within 
the coverage of a single radar, thus allowing for 
relatively small computational domains.  Another 
criterion was to initialize with soundings that 
represented the mature phases of respective events.  
The selected cases also have the common property that 
dense surface observations exist for the duration of the 
respective events (for the Oklahoma cases the data 
exist through the Oklahoma Mesonet, while for the 
Kansas case the data exist through the International 
H2O Project [IHOP]).  In the following, each case is 
briefly described in terms of their synoptic environment 
and convective evolution. 

2.1 The 8 May 2003 Oklahoma Supercell Case 

The mature phase of the 8 May 2003 supercell is 
represented by the 9 May 00Z Oklahoma City (KOUN) 
sounding (Fig. 1a).  The convective available potential 

Figure 1. Skew T diagrams for the environmental soundings used for 3 cases: (a) KOUN 9 May 2003 00Z, (b) KOUN 9 May 2005 
00Z, and (c) 15 June 2002 KDDC 18Z.  Temperature (ºC) profiles are on the left and dew point (ºC) profiles are on the right in each 
panel.  Horizontal wind vectors are shown at the right of each panel (half barbs 5 knots, full barbs 10 knots, flags 50 knots). 
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energy (CAPE) associated with this sounding is 3800 
J/kg, while the convective inhibition (CIN) is computed 
as 50 J/kg.  During the afternoon of 8 May 2003, several 
convective cells formed along a dryline in west-central 
Oklahoma.  Only one of these cells evolved into a 
tornadic supercell.  During most of its life cycle, the 
supercell remained relatively close to the Oklahoma City 
radar site (KTLX).  The evolution of the storm is 
summarized in Fig. 2.  Initialization occurs at around 
20:41 UTC about 40 km north of the existing convective 
cells (Fig. 2a).  The supercell storm goes through a split 
starting at around 21:11 UTC (Fig. 2b) and the right 
mover matures into the tornadic Oklahoma City 
supercell near 22:11 UTC (Fig. 2d). 

2.2 The 8 May 2005 Oklahoma Multicell Case 

The mature phase of the 8 May 2005 multicellular 
system is represented by the 9 May 00Z KOUN 
sounding (Fig. 1b).  The convective available potential 
energy (CAPE) associated with this sounding is 1410 
J/kg, while the convective inhibition (CIN) is computed 
as 75 J/kg.  Nevertheless, this is a very moist sounding 
especially in mid-troposphere, contributing to the 
multicellular nature of the event.  During the day of 8 
May 2005, numerous convective activity was observed 
along a dryline in central Texas and west-central 
Oklahoma.  In afternoon hours, as a result of strong 
surface heating and moisture convergence, stronger 
convection initiated in north central Texas and south 
central Oklahoma.  During most of its life cycle, the 
system remained relatively close to the KTLX radar site.  
The evolution of the storm is summarized in Fig. 3.  
Numerous convective cells form at around 20:58 UTC 
(Fig. 2a).  Strong convection continues while the 
convective area merges into larger cells (Fig. 2c and 2d).  
Although beyond our simulation window, , the system 

after 23:30 UTC begins to interact with a surface 
boundary from earlier convection in east Oklahoma and 
ultimately evolves into a linear system (not shown). 

2.3 The 15 June 2002 Kansas Bow Echo Case 

The mature phase of the 15 June 2002 bow echo is 
best represented by the 15 June 18Z Dodge City, 
Kansas (KDDC) sounding (Fig. 1c).  The convective 
available potential energy (CAPE) associated with this 
sounding is 910 J/kg, while the convective inhibition 
(CIN) is computed as 135 J/kg.  Although not having 
impressive CAPE, the relatively moist profile in mid-
troposphere, strong inhibition that delays initiation, and 
directional shear contributed to the linear nature of the 
event.  During most of its life cycle, the system  

Figure 2.  Evolution of the 8 May 2003 supercell storm.  
Contoured field shown is observed reflectivity at lowest scan 
angle (5 dBZ contours).  The x and y axes are distance (km).  
Panel times are in standard UTC. 

Figure 4.  Evolution of the 15 June 2002 bow echo system.  
Contoured field shown is observed reflectivity at lowest scan 
angle (5 dBZ contours).  The x and y axes are distance (km).  
Panel times are in standard UTC. 

Figure 3.  Evolution of the 8 May 2005 multicell system.  
Contoured field shown is observed reflectivity at lowest scan 
angle (5 dBZ contours).  The x and y axes are distance (km).  
Panel times are in standard UTC. 
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Table 1.  Summary of case-specific properties of the numerical model, bubble initialization, and radar sites. 

 

remained relatively close to the Goodland, Kansas 
(KGLD) radar site.  The evolution of the storm is 
summarized in Fig. 4.  Multiple cells initialize at around 
17:58 UTC (Fig. 4a) which then begin to merge into 
larger cells by 18:28 UTC (Fig. 4b).  The system then 
evolves into its final bow-echo structure between 18:58 
UTC and 19:28 UTC (Fig. 4c and 4d).  Later on during 
its life cycle, the system also produces a tornado on its 
southwestern edge. 

3. DESCRIPTION OF THE FORECAST MODEL AND 
THE DATA ASSIMILATION SCHEME 

3.1 The Weather Research and Forecasting (WRF) 
Model and Model Configuration 

For the present study, the Weather Research and 
Forecasting (WRF) model version 2.1 is used, which is 
the next-generation, nonhydrostatic, community 
mesoscale model (Skamarock et al. 2005) using a 
terrain-following mass coordinate.  The homogeneous 
idealized configuration is initialized with an 
environmental sounding and has open lateral boundary 
conditions.  In this mode, there are no boundary layer or 
land-surface characterizations within the model.  All of 
the experiments described in this study employ flat 
terrain (with model surface specified at same elevation 
as the respective radar site), explicit convection, and a 
6-hydrometeor ice microphysics parameterization (Lin et 
al. 1983).  While the open-lateral-boundary configuration 
limits the model’s access to the larger-scale mesoscale 
environment by the initial sounding, we nevertheless 
believe that this is not a major disadvantage because 
complexities associated with initializing from a three-
dimensional mesoscale environment have not at all 
been explored previously and thus would complicate the  
comparison of results among the chosen cases. 

All 3 cases analyzed in this study are simulated 
within domains of 2-km horizontal and 500-m grid 
spacings.  Model tops are set at 18 km for all cases.  
Further case-specific details are summarized in Table 1.  
To mimic a realistic operational setting, no attempt has 
been made to modify the available observed soundings. 

3.2 The Data Assimilation Research Testbed (DART) 
and the Configuration of Data Assimilation 

The Data Assimilation Research Testbed (DART) is 
a powerful and adaptive collection of ensemble-based 
data assimilation algorithms for geophysical applications 
parallelizable on many platforms, developed and 
maintained at the National Center for Atmospheric 
Research’s (NCAR) Institute for Mathematics Applied to 
Geosciences (IMAGe),.  In this study, we employ the 
parallel EnKF algorithm of DART (Anderson and Collins 
2006).  As a direct result of the assumption of 
uncorrelated observation errors, the algorithm 
processes available observations serially.  Each update 
within the serial loop is equivalent to updating the 
elements of the state vector by a scalar observation with 
specified error variance.  For localization, a compactly 
supported fifth-order correlation function following 
Gaspari and Cohn (1999) is employed.  For all of the 
experiments, assimilations of radial velocity and 
precipitation-induced reflectivity observations are carried 
out using a horizontal localization radius (at which 
correlation weights become zero) of 5 km, while 
vertically, correlations are let to become zero at 4 km 
above/below observations.  When clear-air reflectivity 
observations are assimilated,  due to their extensive 
volumetric coverage, these observations are only 
allowed to influence their nearest respective grid points 
horizontally, while a 4-km vertical localization radius is 
still applied. 

Our experiments have in general revealed a 
deficiency in ensemble spread that caused underfitting 
to the observations.  To partially overcome this problem,  
we have applied constant covariance inflation to the 
prior ensemble states immediately before the start of 
each assimilation cycle.  While inflation factors up to 
1.05 have been observed to help maintain higher 
spread values at assimilation cycles (which improved 
the fit to observations), larger factors have caused 
violations of the model’s instability criteria. 

All experiments are carried out with a constant 
assimilation window of 2 minutes for a duration of 1 hour 

 
08 May 2003 

Case 
08 May 2005 

Case 
15 June 2002 

Case 

WRF Model Properties    

 Location of Domain Center (latitude/longitude) 34.99 N / 97.85 W 34.66 N / 97.83 W 38.26 N / 100.8 W 

 Domain Size (north-south/east-west, km) 150 / 150 150 / 250 150 / 210 

 Elevation of Model Surface (m above sea level) 388 388 1113 

 Time of first assimilation (UTC) 20:41 20:58 17:58 

Bubble Placement Specifics    

 Number of seeds 1 2 2 

 Number of bubbles for each seed 8 5 5 

Radar Site Properties    

 Name of Radar 
Oklahoma City 

(KTLX) 
Oklahoma City 

(KTLX) 
Goodland 
(KGLD) 

 Location of Radar (latitude/longitude) 35.33 N / 97.28 W 35.33 N / 97.28 W 39.37 N / 101.70 W 

 Radar Location Inside or Outside of Domain? Inside North boundary Outside 
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(20 cycles).  At each assimilation cycle, the DART 
algorithm looks for and assimilates only observations 
that are within 1 minute before and after the respective 
assimilation time.  All such observations within this 
window are treated by the algorithm as if they were 
simultaneous.  The model is advanced for 2 minutes 
before the next assimilation cycle is performed.  Since a 
full volumetric scan for operational National Weather 
Service (NWS) WSR-88D radars takes on average 
about 6 minutes to complete (in storm mode), the 
assimilation of a complete volume scan data is carried 
out over 3 assimilation cycles.  Finally, no quality control 
is applied to observations during assimilation for their 
expected difference from model-predicted observation 
values, mainly to eliminate the possibility that the 
commonly deficient spread would cause too many 
observations to be rejected. 

4. ENSEMBLE INITIAL CONDITIONS 

All experiments are carried out with 50 ensemble 
members.  Two sources of uncertainty have been 
assumed in generating ensemble initial conditions.  The 
first one is the uncertainty in the environmental 
soundings.  We applied sinusoidal random perturbations 
to the base sounding on the 3 largest vertical modes.  
Sinusoidal perturbations (as opposed to purely white-
noise perturbations) provide the added advantage in 
that they allow observations to have deeper vertical 
influence especially in the first few assimilation cycles 
when realistic covariance structures have not yet been 
developed by the assimilation system.  Perturbations 
are only applied to the horizontal wind components in 
the base sounding similar to Dowell et al. (2004b).  Our 
experience with perturbing the temperature and 
moisture fields in the sounding has been inconclusive so 
far, for which reason we have chosen to omit adding 
perturbations to temperature and moisture fields for this 
study.  Perturbation amplitudes are 2 ms

-1
 both for zonal 

and meridional wind components of the base soundings. 
Convective initiation in the initial field is achieved 

through the insertion of warm elliptical bubbles into 
member states.  Both bubble locations and amplitudes 
are randomly varied to provide ensemble uncertainty.  
Temperature perturbations within bubbles decay 
exponentially from the peak amplitude until they become 
zero at a horizontal (vertical) radius of 8 km (1.5 km).  
Bubble amplitudes are drawn from a Gaussian 
distribution of 5-K mean and 1-K standard deviation.  
Amplitude values are thresholded at 2.5 K and 7.5 K.  
Similar to Dowell et al. (2004a and 2004b), bubble 
locations are limited to areas near initial convection 
observed in each of the cases.  Depending on the 
location and the aerial coverage of initial convection, we 
define (subjectively) one or more “seed” locations, 
around each of which random bubbles are placed with 
their horizontal distance to seed locations drawn from a 
Gaussian distribution.  We observed that this method of 
bubble placement, compared to equal likelihood of 
bubble locations within a specified area, has in general 
produced more coherent initial covariance structures 
and improved the analyses within the first few 

assimilation cycles.  The standard deviation of the 
bubble distance to the seeds is set at 20 km.  Similar to 
Tong and Xue (2005), no bubbles are placed within a  
horizontal distance equal to bubble radius from the 
lateral boundaries of the computational domain.  
Vertically, bubbles are placed randomly within the first 6 
model levels. 

To obtain more coherent covariance structures and 
to spin up convection in the computational domain, a 
10-minute free ensemble forecast is performed from the 
initial bubble-state for each case and the first 
assimilation is carried out based on this 10-minute 
forecast state.  Further case-specific details of bubble 
placement are summarized in Table 1. 

5. RADAR DATA, ITS PREPROCESSING, AND 
ASSIMILATION 

Single Doppler observations are provided by the 
KTLX (8 May 2003 and 8 May 2005 cases) and KGLD  
(15 June 2002 case) radars.  For all cases, one-hourly 
observations (13 full volume scans) are assimilated at 2-
minute intervals.  In all 3 cases, the radars operated in 
storm mode, producing sweeps at 14 scan angles and 
completing each full volume in about 6 minutes.  
Because of this and also depending on the distance of 
respective convective activity to radar location, 
observations at varying vertical levels and with varying 
numbers are assimilated in subsequent assimilation 
cycles. 

The original data obtained from respective radars is 
in raw WSR-88D level II format.  Preprocessing of the 
raw data mainly involves a Cressman-type objective 
analysis (Dowell et al. 2004a), local velocity unfolding, 
and thresholding for distance to radar and reflectivity.  
No vertical interpolation of the data is carried out.  The 
resulting preprocessed observations still lie on their 
respective original sweep surfaces, but are interpolated 
horizontally to a 2-km flat grid.  Owing to the canonical 
distribution of the objectively analyzed observations, 
observation locations do not coincide with the WRF’s 
horizontal grid (produced through a Lambert map 
projection) and the equally-spaced vertical grid.  
Nevertheless, as a result of the averaging of 
observations at the same horizontal resolution as the 
model, resolution-dependent representativeness errors 
are believed to be minimized. 

The raw WSR-88D observations include aliased 
velocities that must be accounted for during the 
observation preprocessing and assimilation procedures.  
First, a local unfolding technique (Miller et al. 1986) is 
applied during the objective analysis of raw Doppler 
velocity observations.  Then, the objectively analyzed 
observations are de-aliased during the assimilation 
procedure by choosing the unfolding factor that 
produces the best agreement between the observation 
and the prior ensemble mean.  We have had great 
success with this automatic de-aliasing procedure for all 
storm cases attempted to date. 

Contamination of reflectivity data by non-
precipitation sources such as birds and insects is a 
significant source of representativeness error and 
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manifests itself mostly as low-valued observations.  To 
minimize the occurrence of such contamination, further 
preprocessing is applied to reflectivity data to omit 
observations of values lower than 5 dBZ.  Similarly, to 
eliminate ground clutter which mostly occurs near the 
radar site, we simply chose to omit all observations 
within a radius of 10 km from the radar location. 

In some of our experiments, we also assimilate 
clear-air reflectivity observations.  There are two 
sources of clear-air reflectivity observations.  The main 
source is the reflectivity observations that are omitted 
through the 5-dBZ thresholding during the 
preprocessing.  All of such reflectivity observations 
become flagged “clear air” and a constant observation 
value of -10 dBZ is assigned to them.  Another source is 
the grid points that are omitted by the interpolation 
algorithm when insufficient numbers of data points exist 
to perform the interpolation.  Like precipitation 
reflectivity observations, clear-air observations are also 
subjected to the interpolation.  Nevertheless, due to the 
large volume of such observations, a full volume scan 
on average contains about 3-4 times as many clear-air 
observations than precipitation observations. 

Quantification of the magnitude of the observational 
error variance is difficult for radial velocity and 
reflectivity observations.  We chose to use 2 ms

-1
 and 2 

dBZ for the standard deviation of radial velocity and 
reflectivity observations, respectively.  While these 
values are relatively small compared to other values 
used in the literature, we nevertheless believe that they 
are adequate in terms of their impact they have on the 
analysis states, considering the somewhat deficient 
ensemble spread values that were commonly observed 
in our experiments. 

6. RESULTS 

6.1 The Benchmark Case of 8 May 2003 – 
Investigation of Spread Deficiency 

Our benchmark case of 8 May 2003 is very suitable 
for the investigation of the common problem of spread 
deficiency in convective-scale data assimilation.  
Although the sounding for this case has a strong CAPE, 
the combination of dry mid-levels and low-level 
inversion leads to the difficulty in the model’s initiation 
and maintaining of convection from warm bubbles. 
Figure 5 summarizes the time evolution of domain-
averaged root-mean-square (rms) error, bias, and 
ensemble spread (standard deviation) statistics for 
various experiments we performed.  Here and 
elsewhere in the manuscript, rms error, bias, and 
spread statistics are computed in the observation space 
by subtracting model-predicted observations from actual 
observations.  In other words, bias is the mean distance 
of the model to the observations at each time and rms 
error is the mean random variation of the model about 
the observations.  To minimize the effect of systematic 
differences between the model and observations, we 
subtract the bias from the model-observation difference 
before we compute the rms error. 

The statistics from the control experiment with only 
random bubbles in the initial ensemble are shown with 
black lines in Figure 5.  For an ideal ensemble, the 
expected distance between the model and observations 
should, on average, correspond to the square-root of 
the sum of the variances of observational and forecast 
uncertainties.   We see that for both reflectivity and 
radial velocity observations, the spread becomes 
steadily smaller:  By the end of the 60-minute 
experiment, the forecast spread is only about 5% of its 
expected value for both observed variables.  This 
deficiency clearly leads to underfitting of observations 
as demonstrated by the high level of overall forecast 
error (distance to observations, estimated by the sum of 
absolute bias and rms error), which is at 22 dBZ (9 ms

-1
) 

for reflectivity (radial velocity) at the 60-minute cycle. 
Several factors can lead to deficient forecast 

spread.  Not including a realistic environmental 
uncertainty in the initial ensemble is possibly one of the 
major contributors to the deficiency of spread.  To 
address this issue, we introduced sinusoidal 
perturbations to the base state in the vertical.  The 
results from the experiment with 2 ms

-1
 wind 

perturbation magnitude and the same bubble locations 
and magnitudes as the control experiment are 
summarized by the blue lines in Figure 5.  Two other 
potential sources for spread deficiency are more difficult 
to account for.  While sampling error due to the limited 
ensemble size does lead to underestimation of forecast 
uncertainty, unaccounted model error can also cause 
large differences between the model and observations.  
One simple way to address these two latter issues is the 
application of covariance inflation prior to assimilating 
observations.  Two additional experiments with constant 
prior state-space covariance inflation of 1.02 (1.05) (in 
addition to bubbles and sounding perturbation) are 

Figure 5.  60-minute evolution of prior and posterior (sawtooth 
shape) rms distance to observations (left panels), mean 
distance to observations (middle panels), and ensemble spread 
(right panels) for the benchmark 8 May 2003 case.  Statistics 
are plotted for the two observed variables reflectivity (top row) 
and radial velocity (bottom row).  Experiments shown are no 
sounding perturbations (black), only sounding perturbations 
(blue), sounding perturbations plus covariance inflation of 1.02 
(green), and sounding perturbations plus covariance inflation of 
1.05 (red). 
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shown with green (red) lines.  From sounding-
perturbation-only experiment to the 1.05-inflation-factor 
experiment, we see a progressive improvement in the 
level of overall spread in the ensemble for both 
observed variables (Figure 5c and f).  Because the 
sounding perturbations are in the wind fields, 
improvement in the spread of radial velocity is much 
more pronounced.  As a direct result of increased 
ensemble spread, and as a sign of improved fitting to 
observations, bias values also drop considerably.  
Finally, the overall forecast error at the 60-minute cycle 
is reduced by 6.5 dBZ and 2 ms

-1
 for the two observed 

variables.  Nevertheless, despite the improved levels of 
spread, spread deficiency is still present.  At the 60-
minute cycle, the forecast spread for reflectivity (radial 
velocity) is roughly 50% (60%) deficient for the same 
experiment. 

Figure 6 compares the distribution of 60-minute 
reflectivity forecast-observation differences for the four 
experiments discussed.  We see that, from the 
experiment initialized with bubbles only (Figure 6a) to 
the experiment with perturbed soundings and the 
inflation factor of 1.05 (Figure 6d), there is a significant 
improvement in the estimated structure especially of the 
main storm.  The most striking improvement occurs in 
the main updraft region, which appears to be entirely 
missed in Figure 6a.  Progressively, errors in the main 
updraft and outflow regions of the primary storm and its 
left mover are reduced and most errors are confined to 
a narrow band in the periphery of the main storm.  
Meanwhile, errors outside the main storm system are 
changed very little across the experiments, mainly due 

to the insufficient spread found in those locations 
(spread distribution not shown for brevity). 

6.2 8 May 2005 and 15 June 2002 Cases – 
Investigation of the Impacts of Clear-Air 
Reflectivity Data 

When we applied the optimal settings obtained from 
the 8 May 2003 benchmark case, namely initial 
conditions with bubbles and sounding perturbations and 
a covariance inflation factor of 1.05, to the 8 May 2005 
and 15 June 2002 cases, we encountered another 
problem that we believe is generic to some convective 
situations.  The problem arises from initializing with an 
environmental sounding that the forecast model favors 
for convection.  In such a case, convection is initiated at 
many of the randomly placed bubble locations in 
ensemble members, and a wide-spread convective area 
forms in the mean state.  When one assimilates only 
reflectivity data obtained from the observed precipitation 
region, it is impossible for the assimilation system to 
suppress such spurious convection at typical 
localization radii (see also Snyder and Zhang 2003).  
The formation and the evolution of such spurious 
convective activity is shown for the 8 May 2005 and 15 
June 2002 cases in Figure 7.  In the experiment shown, 
reflectivity data assimilated comes from the respective 
observed precipitation regions only (through our 
thresholding of reflectivity observations at 5 dBZ during 
preprocessing).  For comparison, observed 30-dBZ 
regions are highlighted by black contour lines.  We see 
that while the assimilation system actually captures the 
structure of the observed convective activity relatively 
well, many spurious cells outside the observed 
precipitation region form, expand, and propagate, 
deteriorating the quality of the analysis considerably. 

As a remedy to the problem of spurious cell 
formation, we assimilated clear-air reflectivity data in 
addition to precipitation reflectivity and radial velocity 
observations used thus far in the experiments.  The 
corresponding analyses from this experiment are shown 
at the same times and for the same cases in Figure 8.  
We see that considerable suppression of precipitation 
occurs early during the experiment and progressively 
better analyses of the actual precipitating system are 
obtained as more data is assimilated over time.  While 
the suppression of spurious cells in analysis states is in 
itself an improvement of the assimilation system, we 
also analyze the impacts of assimilating clear-air 
reflectivity data through statistics computed within the 
precipitation region itself.  Since identical precipitation-
reflectivity observations are assimilated in experiments 
with and without clear-air reflectivity data, this is a fair 
comparison and points to the indirect effects of clear-air 
data on the analysis of the respective observed 
convective systems.  Such indirect effects can be 
expected to arise dynamically within the main 
convective system when interactions with the 
surrounding spurious convection are suppressed, and 
also through the indirect impact of vertical localization 
(in the horizontal direction, clear-air observations are 
only allowed to impact the nearest model grid point).  

Figure 6.  60-minute observation-forecast difference for
reflectivity (contoured at 1 dBZ) at the lowest scan angle for the 
benchmark 8 May 2003 case.  Experiments shown are (a) no 
sounding perturbations, (b) only sounding perturbations, (c) 
sounding perturbations plus covariance inflation of 1.02, and 
(d) sounding perturbations plus covariance inflation of 1.05.
For comparison, the observation values at the same time are 
outlined at 20 dBZ and 40 dBZ with black counturs.   



 8 

The rms error, bias, and spread statistics for 
precipitation reflectivity are summarized in Figure 9 for 
all 3 cases investigated in this study.  Noticeable 
improvement is achieved in the bias statistics between 
experiments without and with  clear-air reflectivity data 
(compare red dashed lines to green dashed lines).  The 
improvement is most pronounced for the 8 May 2003 
cases, where the difference on average is between 3-5 

dBZ, while the smallest improvement occurs for the 15 
June 2002 case.  But even for this case, the reduction in 
bias is about 1 dBZ at 30 minutes.  Figure 9 also reveals 
that the reduction in bias is somewhat compensated by 
an increase in the rms error statistics from the 
experiments without to the experiments with the clear-
air data (compare red solid lines to green solid lines).   
However, for all cases and at all times, the magnitude of 

Figure 7.  20-minute (panels a, d), 40-minute (panels b, e), and 60-minute (panels c, f) analysis of 
reflectivity (5 dBZ contours) at 5 km for 8 May 2005 case (top rows) and 15 June 2002 case (bottom 
rows) without the assimilation of clear-air data.  The 30-dBZ contour of observed reflectivity at 
corresponding height and time is shown with solid black lines for comparison.  The x and y axes are 
distance in km. 

Figure 8.  20-minute (panels a, d), 40-minute (panels b, e), and 60-minute (panels c, f) analysis of
reflectivity (5 dBZ contours) at 5 km for 8 May 2005 case (top rows) and 15 June 2002 case (bottom 
rows) with the assimilation of clear-air data.  The 30-dBZ contour of observed reflectivity at 
corresponding height and time is shown with solid black lines for comparison.  The x and y axes are 
distance in km. 
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the increase in rms error remains less than the 
magnitude of the decrease in bias, so that the level of 
overall error nevertheless is reduced. 

The simultaneous decrease in bias and increase in 
rms error is possible because while the bias arises from 
broad areas of systematic observation-forecast 
differences, rms error is associated with localized 
narrow peaks of observation-forecast differences.  We 
observe that clear-air observations lead to the reduction 
of bias in such broad features but do not have much 
impact on the magnitudes of narrow observation-model 
difference peaks.  Consequently, while bias is reduced, 
relative distance of the model to observations in such 
narrow peaks increases, leading to an increase in rms 
error. 

7. CONCLUSIONS AND PLAN FOR FUTURE WORK 

More vigorous research is needed on how best to 
initialize an ensemble and maintain spread throughout 
the cycling of observations.  The large observed impact 
of initialization with perturbed soundings hints at the 
need to force the model with realistic mesoscale 
uncertainty.  Meanwhile, due to the large volume of 
radar data observations, repeated cycling of 
observations also imposes a challenge on maintaining 
sufficient levels of ensemble spread.  While we have 
demonstrated that covariance inflation can help 
maintain higher levels of spread, methods that 
selectively introduce additive noise to regions of 
observed precipitation will likely be more effective in 
introducing more realistic perturbations to the model 
state.  In the future, we are planning on expanding our 
research to investigate one such technique that we are 
implementing to the WRF-DART system.  Finally, 
sensitivity of analysis quality to initial conditions is 
another aspect we are considering to examine in the 
future. 

We are also planning to expand our investigation to 
storm-scale forecasting for each case based on 60-
minute analysis states obtained through various 
experimental settings.  Clearly, this is a much more 
challenging problem and it is not obvious how relative 
impacts to the analyses by different techniques such as 
perturbed soundings, inflation, and assimilation of clear-

air data will translate to differences in the quality of 
forecasts. 
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