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1. INTRODUCTION

The horizontal kinetic and potential energy spectra of the
atmosphere near the tropopause, observed during the
Global Atmospheric Sampling Program (GASP) in the
1970’s and analyzed by Nastrom and Gage (1985), have
a steep−3 spectral slope on synoptic scales (≈ 3,000km-
1,000km) followed by a smooth transition to a shallow
−5/ 3 spectral slope on the mesoscales (≈ 500km-10km).
The synoptic scale−3 slope is consistent with the forward
potential enstrophy cascade expected in geostrophic tur-
bulence, but geostrophic scaling should continue to hold
near and below 500km, where the transition to −5/ 3 is
observed to occur. Attempts to explain the observed shal-
lowing transition in the spectra are so far incomplete.

Analysis of horizontal velocity data collected during
the Pacific Exploratory Mission at altitudes between 9 and
12km over the Pacific Ocean indicate that mesoscale en-
ergy is dominated by vortical modes rather than diver-
gent modes (Cho et al., 1999) and that the −5/ 3 slope is
due to a forward energy cascade at scales smaller than
100km (Cho and Lindborg, 2001). Thus it is unlikely that
the -5/3 part of the spectra is due to either a two dimen-
sional inverse cascade or to gravity wave production by
divergent flows.

The ideas of geostrophic turbulence (Charney,
1971) that lead one to expect only an inverse cas-
cade of energy in balanced dynamics explicitly neg-
elect surface dynamics. Surface quasigeostrophic (SQG)
flow, proposed by Blumen (1978) as a counterpoint
to geostrophic turbulence, is the special case of quasi-
geostrophic (QG) dynamics with uniform potential vortic-
ity and non-uniform potential temperature on the bound-
aries. In SQG the total energy of the three-dimensional
system and the available potential energy (APE) on the
boundaries are separately conserved. This results in an
inverse cascade of total 3D energy, but a forward cascade
of boundary APE, with a −5/ 3 spectral slope. Because
surface kinetic energy in SQG is related to the surface
APE by a constant, the kinetic energy at the boundary
also exhibits a −5/ 3 spectrum.

The relevance of SQG to atmospheric dynamics was
considered by Blumen (1978), Juckes (1994), Held et al.
(1995) and Hakim et al. (2002). Tulloch and Smith
(2006) considered a depth limited SQG flow with con-
stant stratification N, rigid lid, an isothermal lower bound-
ary and random large-scale forcing. The kinetic energy
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spectrum for the inertial range of this system is

E(K ) = CT ε
2/ 3 [tanh(K/kd )]−4/ 3 K−5/ 3 (1)

which transitions from a −3 to a −5/ 3 slope at wavenum-
ber kd = f/ (NH) for a fluid of depth H, where ε is the flux of
boundary energy. Unfortunately, the transition scale kt is
near the scale of Eady baroclinic instability so it is unlikely
that the −3 part of the cascade would appear with baro-
clinic forcing. Moreover, taking the tropopause height to
be about H = 10km results in an expected transition scale
that is about ten times larger than the observed transition
scale Nastrom and Gage (1985).

Much of the inadequacy of the finite-depth SQG
model results because potential vorticity dynamics are
suppressed, and the forcing is artificial. Here we in-
clude interior dynamics and baroclinic forcing by mean
zonal shear. This model creates a large-scale interior-
dominated forward potential enstrophy cascade (with
spectral slope −3) which transitions to a surface-
dominated surface energy cascade at small scales (with
spectral slope −5/ 3). A bottom surface is included to dis-
sipate large-scale energy through Ekman friction. This
scenario should result in energy equipartition between ki-
netic and potential energy in both regimes of the cascade
since the −3 large scale regime should obey the Char-
ney (1971) theory. Moreover the transition wavenumber
kt in this model will depend on the relative strengths of
interior and boundary mean gradients, rather than on the
depth of the fluid.

2. SURFACE-INTERIOR INTERACTION MODEL

We assume mean baroclinic wind U(z) and potential vor-
ticity Q(z) that depend only on the vertical coordinate,
and an eddy potential vorticity q(x, y, z, t). The evolution
equation is

qt + J(ψ, q) = −U · ∇q − u · ∇Q, (2)

where u = ux̂ + v ŷ = −ψy x̂ +ψx ŷ , with ψ the streamfunc-
tion,∇ is a horizontal gradient, and J(A, B) = Ax By−Ay Bx

is the Jacobian operator. The potential vorticity is related
to the streamfunction by

q = ∇2ψ + Γψ, (3)

where

Γ ≡ ∂z
f 2

N2
∂z (4)

is the vortex stretching operator, f is the Coriolis fre-
quency, N2 = (g/ θ0)dΘ/dz is the mean stratification, and



z is a pseudo height. Similarly, the mean potential vortic-
ity is related to the mean wind and meridional gradient of
the Coriolis frequency β by

∇Q = ΓV x̂ + [β − ΓU] ŷ . (5)

In our model we assume a doubly periodic domain in
the horizontal and rigid boundaries at the top and bottom
surfaces. We also allow for dissipation by Ekman friction
at the lower surface, so our boundary conditions for po-
tential temperature at the top θT and bottom θB are

θT
t + J(ψ(zT ), θT ) =− U(zT ) · ∇θT − u (zT ) · ∇ΘT , (6)

θB
t + J(ψ(zB), θB) =− U(zB) · ∇θB − u (zB) · ∇ΘB

− r∇2ψ(zB), (7)

where r is the Ekman drag coefficient, and the mean po-
tential temperature gradients ∇ΘT,B in thermal wind bal-
ance with the mean winds

g
θ0
∇ΘT,B = f

(
V T,B

z x̂ − UT,B
z ŷ

)
. (8)

Finally, the potential temperature at the boundaries is re-
lated to the streamfunction by Neumann boundary condi-
tions

f
∂ψ

∂z

∣∣∣∣
z=zT ,zB

=
g
θ0
θT,B , (9)

so that initial fields θT , θB , and q can be inverted for the
streamfunction, from which the flow field can be diag-
nosed.

Since the problem of inverting potential vorticity in (3)
with boundary conditions (9) is linear we can decompose
the total streamfunction into an interior component and
surface components ψ = ψI +ψT +ψB (Lapeyre and Klein,
2006), where ψI(x, y, z, t) solves the interior problem

∇2ψI + ΓψI = q, ψI
z

∣∣∣
z=zT

= 0, ψI
z

∣∣∣
z=zB

= 0, (10)

and ψT (x, y, z, t) and ψB(x, y, z, t) solve the surface prob-
lems

∇2ψT +ΓψT = 0, fψT
z

∣∣∣
z=zT

=
g
θ0
θT , ψT

z

∣∣∣
z=zB

= 0, (11)

∇2ψB + ΓψB = 0, ψB
z

∣∣∣
z=zT

= 0, fψB
z

∣∣∣
z=zB

=
g
θ0
θB . (12)

When we let the horizontal domain be doubly peri-
odic, the solution to equation (10) can be written as a
sum of horizontal Fourier components and vertical modes
of the associated Sturm-Liouville problem

ψI(x, y, z, t) = ∑
K

∑
m≥0

ψ̃m(K , t)φm(z)eiK ·x , (13)

where K = (kx , ky ) is the wavenumber vector and φm are
the eigenfunctions which solve

Γφm = −λ2
mφm,

d
dz
φm

∣∣∣∣
z=zT

= 0,
d
dz
φm

∣∣∣∣
z=zB

= 0. (14)

Similarly we can write the solutions of (11) and (12) as

ψT,B(x, y, z, t) = ∑
K

ψ̃T,B(K , t)φT,B(K, z)eiK ·x , (15)

where K = |K |.
The interior and surface modes can be obtained nu-

merically for arbitrary stratification, but here we specialize
to constant stratification N. Taking zT = 0 and zB = −H,
the surface modes are

φT =
cosh[KN(z + H)/f ]

cosh(KNH/f )
, φB =

cosh(KNz/f )
cosh(KNH/f )

(16)

and the interior modes are

φm =
√

2 cos(mπz/H), λm =
mπf
NH

. (17)

In this case the inversion between the advected variables
and the streamfunction takes on the simple form

q(x, y, z, t) = −∑
K

∑
m≥0

(K 2 + λ2
m)φm(z)ψ̃m(K , t)eiK ·x (18)

θT (x, y, t) = ∑
K

θ0KN
g

tanh(KNH/f )ψ̃T (K , t)eiK ·x (19)

θB(x, y, t) = −∑
K

θ0KN
g

tanh(KNH/f )ψ̃B(K , t)eiK ·x . (20)

Because the interior modes φn(z) are orthonormal,
one can find the advection equation for the n-th mode of
potential vorticity by expanding variables in modes, mul-
tiplying (2) by φn and integrating vertically (here we write
the general form applicable for arbitrary N)

1
H

Z 0

−H
φn(z) (qt + J(ψ, q) + U · ∇q + u · ∇Q) dz = 0

⇒ ∂

∂t
q̃n + ∑̀

m

ε`mnĴ(ψ̃`, q̃m) + ∑
m

Ĵ(γT
mnψ̃

T + γB
mnψ̃

B , q̃m) =

− ik ∑̀
m

ε`mn

(
Ũmλ

2
mψ̃` + Ũ`q̃m

)
− ik ∑

m

[
Ũmλ

2
m

(
γT

mnψ̃
T + γB

mnψ̃
B
)

+ ξmnq̃m

]
− ik(β − ΓUs)

(
ψ̃n + αT

n ψ̃
T + αB

n ψ̃
B
)

, (21)

where Ĵ symbolically denotes the summation over hor-
izontal wavenumbers and ΓUs is the constant mean
meridional gradient of the vortex stretching term due to
surface gradients. The coefficients

ε`mn =
1
H

Z 0

−H
φ`φmφndz,

αT,B
n =

1
H

Z 0

−H
φnφ

T,Bdz,

γT,B
mn =

1
H

Z 0

−H
φmφnφ

T,Bdz,

ξmn =
1
H

Z 0

−H
φmφnUs(z)dz. (22)

represent self interaction of the internal modes, and inter-
actions between the interior and surfaces.



The conserved energy in the system is obtained by
multiplying the potential voriticty by minus the full stream-
function and integrating over the depth. In Fourier space
the energy is

E =
1
2

H<∑
K

∑
m≥0

(
K 2 + λ2

m

)
ψ̃2

m

+
1
2

f
N2

g
θ0
<∑

K

(
ψ̃T∗θ̂T − ψ̃B∗θ̂B + 2

ψ̃B θ̂T

cosh(KNH/f )

)
+

f
N2

g
θ0
<∑

K
∑

m≥0

(
φm(0)ψ̃∗mθ̂

T − φm(−H)ψ̃∗mθ̂
B
)

(23)

where λm = mπf/ (NH) are the eigenvalues of (14), hats ˆ
denote Fourier transformed variables, and ∗ denotes the
complex conjugate. The first three terms in (23) are the
interior energy and the two surface energies, while the
last three terms are the interactions between the two sur-
faces and the interactions between the interior modes
and each surface.

3. NUMERICAL SIMULATIONS WITH A TRUNCATED
MODEL

We derive a truncated model (termed the 2S2M model)
by making the following assumptions: (1) constant N, (2)
a truncation of the interior expansion to just two modes
(barotropic and baroclinic), and (3) a mean flow that is
decomposed into interior and surface parts, with the inte-
rior part projecting only onto the baroclinic mode (Ũ0 = 0,
Ũ1 6= 0). With constant stratification, the coefficients (22)
can be computed analytically. Equation (21) becomes
four advection equations: one for each surface, and one
for each remaining internal mode. Note that each field
is advected by the full streamfunction, with contributions
from both the surfaces and interior modes at each level.

A series of simulations with the 2S2M model were
computed, varying the strength of the top surface tem-
perature gradient ΘT

y = −2,−1,−0.5,−0.25, while hold-
ing constant the mean interior wind U I = (4/π) cos(πz/H)
(i.e., Ũ1 = 2

√
2/π) and setting the bottom gradient to

zero (−ΘB
y = 0). A small deformation wavenumber

kd = L/ (2π)f/ (NH) = 2 was used in order to have as
large a forward cascade range as possible. The rela-
tive Coriolis gradient is β̌ = β(∆U)−1k−2

d = 1, where
∆U =

√
2πŨ1 − (ΘT

y + ΘB
y )/ 2 is the nondimensional ve-

locity that scales with the linear growthrate. The relative
Ekman drag ř = r (∆U)−2k−1

d = 0.02 is small to minimize
its effects on small scales. The forward cascade is dis-
sipated with a scale-selective exponential cutoff filter that
affects a narrow range of wavenumbers close to kmax (the
largest resolved horizontal wavenumber).

Figure 1 shows the components that make up the ki-
netic energy spectra at the top surface in the case with
ΘT

y = −0.5 and a horizontal resolution of 20482. The ki-
netic energy spectrum at the top surface, K 2ψ̂(z = 0)2,
is dominated by the −3 sloped barotropic kinetic energy
spectrum, K 2ψ̃2

0 , at large scales and transitions to the
−5/ 3 slope of the temperature variance, (gθ̂T /Nθ0)2 at
small scales.
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FIG. 1: Energy densities as a function of horizontal
wavenumber K = |K | for the simulation with ΘT

y = −.5.
Kinetic energy density at the top surface (solid line),
barotropic kinetic energy (dash-dot), and variance of po-
tential temperature (dashed).

The flux of available potential energy at the top sur-
face

ε(K ) =
g2

θ2
0N2

K

∑
1

θ̂T Ĵ(ψ̂(z = 0), θ̂T ) (24)

is approximately constant over the −5/ 3 range (ε ≈ 0.24
nondimensionally) as shown in Figure 2. If we then
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FIG. 2: Flux of available potential energy at the top
surface for the simulation with ΘT

y = −0.5.

take this energy flux and the surface spectrum in figure
1 and compare them with Kolmogorov scaling E(k ) =
Cε2/ 3k−5/ 3, we find C ≈ 3.9.

Figures 3 and 4 show that the transition scale is in-
dependent of resolution and dependent on the relative
strength of the interior and surface forcings. In fig-
ure 4 the relative strength of the surface forcing is var-
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FIG. 3: Kinetic energy spectra at z = 0 with ΘT
y = −.5

computed for different horizontal resolutions.
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FIG. 4: Kinetic energy spectra at z = 0 with ΘT
y = −2,

−1, −0.5, and −0.25 and Ũ1 = 2
√

2/π. (Inset) The mea-
sured transition wavenumber, defined as where the slope
is k−7/ 3, compared with the ratio −Ũ1/ ΘT

y .

ied as all other parameters, including the interior forc-
ing, are held constant. The linear growthrates for these
simulations (not shown) are nearly the same, peaking
at zonal wavenumber K ≈ 2kd with growthrate ωi ≈
0.15(∆U)f/ (NH) and longwave cutoff due to β at zonal
wavenumber K ≈ 1.5kd . The inset shows that the transi-
tion wavenumber varies linearly with Ũ1/ ΘT

y .
Figure 5 shows that the transition to a −5/ 3 slope

occurs only near the boundary since the SQG surface
modes (16) decay exponentially with height when K >
kd . The kinetic energy at middepth z = −H/ 2 is mainly
barotropic with minimal surface influence, and the SQG
dynamics at the bottom are unforced and damped by the
Ekman drag.

Finally, we ran a simulation with realistic atmospheric
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FIG. 5: Kinetic energy spectra at different height values
with ΘT

y = −0.5.

forcing to verify that SQG dynamics emerge at small
scales at the upper boundary in our model. Using NCEP
long term monthly mean data, a mean wind profile is com-
puted by averaging temporally, zonally and from 30◦N to
60◦N (where most of the GASP data is from). The merid-
ional potential temperature gradients from the 1000 mb
and 200 mb data are computed by differencing the 60◦N
and 30◦N averages, from which the mean zonal wind that
is induced by the top and bottom surfaces can be ob-
tained via thermal wind balance. The interior first baro-
clinic mean zonal wind is therefore approximately the dif-
ference between the NCEP data profile and the surface
induced zonal wind. Figure 6 shows the NCEP averaged
zonal wind with its mean subtracted (solid), the surface in-
duced zonal wind (dash-dot), the residual first baroclinic
wind (dotted) and the total zonal wind used in the model
(dashed).

We chose model parameters as follows: latitude=
45◦, L = 10000km, H = 10km, N = 10−2s−1, av-
eraged NCEP long term mean values U = 19.5m/s,
ΘT

y = 4.34× 10−7K/m, ΘB
y = −6.34× 10−6K/m which for

our model with sides of length 2π gives nondimensional
model parameters kd = (L/ 2π)f/ (NH) = 1.6, β = 2.1
(β̌ = 0.48), r = 1 (ř = 0.48), f = 1, H = 1, ΘT

y = 0.06,
ΘB

y = −1.09, and Ũ1 = 0.17. With these parameters
the model produces the steady state spectra in figure 7,
which transitions from −3 to −5/ 3 near model wavenum-
ber K ≈ 50−100 (wavelength 200-100km), although this
scale may be sensitive to the value of ΘT

y . Figure 8 shows
that the dimensional flux of available potential energy at
the top surface is ε ≈ 3× 10−6m2s−3, which is less than
the ε ≈ 6×10−5m2s−3 found in Cho and Lindborg (2001)
on scales between 10km and 100km but is reasonable.

4. DISCUSSION

We have demonstrated that a balanced model that prop-
erly represents surface buoyancy dynamics will produce a
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FIG. 6: Baroclinic NCEP zonal velocity averaged tem-
porally, zonally and from 30◦N to 60◦N (solid); surface
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FIG. 7: The spectra using the atmospheric winds in
figure 6. Shown are the kinetic energy at the top sur-
face (solid), the barotropic kinetic energy (dash-dot), and
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robust forward cascade along its boundaries, with a spec-
trum that exhibits a shallowing from −3 to −5/ 3 slope,
consistent with the observed atmospheric kinetic energy
spectrum. The transition scale in this model is set by the
ratio of the horizontal temperature gradients at the upper
boundary and the interior; using midlatitude atmospheric
parameters and mean gradients (at least as well as such
can be represented in this truncated model) produces a
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FIG. 8: The fluxes using the atmospheric winds in fig-
ure 6.

transition scale near the observed scale.
The proposed model is, of course, still incomplete.

In particular it produces insufficient potential energy at
large-scales — the GASP data shows potential and ki-
netic energy with nearly identical spectra at large and
small scales, whereas the 2S2M model produces a weak
APE spectrum at large scales (this may be the result of
our severe truncation of vertical modes). Observations
of the atmospheric energy spectra at mid-tropospheric
depths are sparse, but those that do exist show a spec-
tral slope of kinetic energy a little steeper than −2. The
model proposed here, by contrast, produces an interior
(mid-depth) spectrum with a slope with a minimum ap-
proaching −3.
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