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1.    PURPOSE 

There is considerable interest in the question of how 
best to assess the economic value of weather 
forecasts (Stern and Dawkins, 2004; Stern, 2005a). 
The primary purpose of this paper is to report on how 
this might be achieved utilising an application of 
financial market mathematics (Stern, 2006a). 

Specifically, the focus of the work presented here is 
upon a set of Day1 to Day7 maximum temperature 
forecasts, which have been generated by a system 
that mechanically integrates (that is, combines) 
judgmental (human) and automated predictions 
(Stern, 2006b; 2007a&b). The system has now been 
extended to provide forecasts out to ten days (Stern, 
1999; Stern, 2005b&c). 

2.    INTRODUCTION 

A "real-time" trial of the system has been ongoing 
since 20 August 2005. After 589 days, to 31 March 
2007, the trial revealed that, overall, the various 
components (rainfall amount, sensible weather, 
minimum temperature, and maximum temperature) of 
Melbourne forecasts so generated explained 42.0% 
variance of the weather, 6.1% more variance than the 
35.9% variance explained by the human (official) 
forecasts alone (Table 1). 

3.    FORECASTS OUT TO TEN DAYS 

Since 20 August 2006, forecasts have also been 
generated for beyond Day7 (Day8 to Day10).  

After 224 days, to 31 March 2007, Day8 forecasts 
explained 11.7% of the variance, Day9 forecasts 
explained 6.3% of the variance, and Day10 forecasts 
explained 3.5% of the variance (Figure 1). For these 
longer range forecasts, the variance explained was 
mainly for the temperature components.  
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4.    HIGH-IMPACT EVENTS 

Shapiro and Thorpe (2004) note:  "THORPEX 
addresses the influence of sub-seasonal time-scales 
on high-impact forecasts out to two weeks, and 
thereby aspires to bridge the 'middle ground' between 
medium range weather forecasting and climate 
prediction". 

It was expected that mechanically integrating 
judgmental (human) and automated predictions via 
some kind of an averaging procedure would result in 
an inferior set of forecasts for extreme (high-impact) 
events.  

Figure 2 shows that this proved to be the case for the 
hottest 10% of days (Decile 10), the average absolute 
error of the combined forecasts leading up to the 
hottest 10% of days being 0.27°C higher than the 
average absolute error of the corresponding official 
forecasts. However, this proved not to be the case for 
the coolest 10% of days (Decile 1), the average 
absolute error of the combined forecasts leading up to 
the coolest 10% of days being 0.11°C lower than the 
average absolute error of the corresponding official 
forecasts. 

5.    FORECAST CONSISTENCY 

What is particularly interesting about the verification 
data is that the combined forecasts are more 
consistent than the official forecasts. 

For example, the consistency, that is, the RMS inter-
diurnal change in the sequences of combined 
forecasts of maximum temperature (7 days in 
advance, 6 days in advance, 5 days in advance, 4 
days in advance, 3 days in advance, 2 days in 
advance, 1 day in advance) is 1.38ºC (this RMS inter-
diurnal change being well below the 1.82ºC 
associated with the official forecasts).  

6.    OPTIONS PRICING THEORY 

In a 1992 paper presented to the 5th International 
Meeting on Statistical Climatology, the author 
introduced a methodology for calculating the cost of 
protecting against the onset of global warming (Stern, 
1992).  

The paper, “The likelihood of climate change: A 
methodology to assess the risk and the appropriate 
defence”, was presented to the meeting held in 



Toronto, Canada, under the auspices of the American 
Meteorology Society (AMS). In this first application of 
what later was to become known as 'weather 
derivatives' (Stern, 2001a,b,c,&d; 2002a&b; Dawkins 
and Stern, 2003, 2004; Stern and Dawkins, 2003, 
2004) the methodology used options pricing theory 
from the financial markets to evaluate hedging and 
speculative instruments that may be applied to 
climate fluctuations.  

What now follows is an application of options pricing 
theory where one uses the theory in the context of 
assessing the economic value of weather forecasts.  

The theory shows that the more consistent forecasts 
are from one day to the next, between Day7 (when 
they are first issued) and Day1 (the final issue), the 
cheaper are the prices of option contracts (weather 
derivatives) that one may wish to purchase to protect 
against the eventuality that the forecasts might be 
incorrect (refer to the next section).  

The implication from this is that, the more consistent 
forecasts are from one day to the next, the more 
valuable are the forecasts. 

7.   THE ECONOMIC VALUE OF FORECASTS 

A challenge in pricing options on commodities is non-
randomness in the evolution of many commodity 
prices. For example, the spot price of an agricultural 
product will generally rise prior to a harvest and fall 
following the harvest. Natural gas tends to be more 
expensive during winter months than summer 
months. Because of such non-randomness, many 
spot commodity prices cannot be modelled with a 
geometric Brownian motion, and the Black-Scholes 
(1973) or Merton (1973) models for options on stocks 
do not apply.  

In 1976, Fischer Black published a paper (Black, 
1976) addressing this problem and the Risk Glossary 
(2006) summarises the result of his work thus: 

His (Black’s) solution was to model forward prices as 
opposed to spot prices. Forward prices do not exhibit 
the same non-randomness of spot prices. Consider a 
forward price for delivery shortly after a harvest of an 
agricultural product. Prior to the harvest, the spot 
price may be high, reflecting depleted supplies of the 
product, but the forward price will not be high. 
Because it is for delivery after the harvest, it will be 
low in anticipation of a drop in prices following the 
harvest. While it is not reasonable to model the spot 
price with a Brownian motion, it may be reasonable to 
model the forward price with one. The assumption 
that the spot price follows a log-normal process is 
replaced by the assumption that the forward price 
follows such a process. From there the derivation is 
identical to the Black-Scholes formula for evaluating 

stock options and so the final formula is the same 
except that the spot price is replaced by the forward - 
the forward price represents the expected future value 
discounted at the risk free rate. Black's (1976) option 
pricing formula reflects this solution, modelling a 
forward price as an underlier in place of a spot price.  

Pricing options on forecast weather elements, which 
may be employed in a weather risk management 
context, also requires one to address non-
randomness in the evolution of many forecasts of 
these weather elements. For example, the predicted 
maximum temperature, for say, 4 days hence, will 
generally rise as a ridge of high-pressure approaches 
(anticipating warmer winds from lower latitudes once 
the ridge passes) even though the current 
temperature is relatively low. Because of such non-
randomness, forecasts of weather elements cannot 
be modelled with a geometric Brownian motion, and 
Black's (1976) option pricing formula also now can be 
applied to forecasts of a weather element.  

From the foregoing, one may note that, in evaluating 
option contracts used in the context of applying 
“weather derivatives” to day to day forecasts in a risk 
management context, it may be demonstrated that the 
cost of the “weather derivative” option on a forecast 
increases as the volatility (σ) of the underlying 
forecast increases in precisely the same manner that 
the cost of an option on a forward contract increases 
as the volatility (σ) of the underlying forward 
increases. 

The Black (1976) formula for a call option on an 
underlying struck at K, expiring T years in the future is  

c = e − rT(FN(d1) − KN(d2))  

and the put price is  

p = e − rT(KN( − d2) − FN( − d1))  

where 

o r is the risk-free interest rate  

o F is the current forward price of the 
underlying for the option maturity  

o σ is the volatility of the forward price, and,  

o N(.) is the standard cumulative Normal 
distribution function.  

From the formula, the issue of what values to use is 
not a trivial one. To illustrate, let us suppose that one 
wishes to value a European call option (using a 
dividend yield of 0%) on the Day1 forecast maximum 
temperature being above 35°C when: 

o The forecast at Day7 is for a 
temperature of 32°C,  



o The RMS Inter-Diurnal Change is 2°C,  

o The interest rate is 5%, and  

o The pay-off is $1.00 per each degree 
Celsius above 35°C. 

The methodology is now illustrated:  

Step 1. To neutralise the impact of the choice of units 
used, add a large number, say, 1000, to both F and 
K, which results in F=1035 and K=1032. 

Step 2. To neutralise the impact of the units used for 
the volatility, divide the RMS inter-diurnal change 
(2°C) by the new value for K (1032), which 
approximates to the 1-day volatility that one would 
obtain under the assumption that the new forecast 
follows a lognormal process. This is because the new 
forecast series is a set of large numbers, and, as a 
consequence, the 

RMS inter-diurnal change ~ 

√ ((1/6) x∑ 
(((ln (Abs (Day6value/Day7value)) 2 +  
ln (Abs (Day5value/Day6value)) 2 + 
ln (Abs (Day4value/Day5value)) 2 + 
ln (Abs (Day3value/Day4value)) 2 + 
ln (Abs (Day2value/Day3value)) 2 +   
ln (Abs (Day1value/Day2value)) 2) 

Step 3. To obtain the annualised volatility, multiply the 
1-day volatility obtained at Step 2 by    √ (365) that, in 
the current case, yields 3.70%.  

Step 4. Go to one of the many option calculators on 
the WEB (for example, Numa Financial Systems, 
2006) to obtain a theoretical European call option 
value based on a maturity date of 6 days hence (Day-
7 to Day-1) to yield $1.06 as the value of the call 
option. 

The material presented demonstrates the proposition 
that, when undertaking a defensive strategy of 
purchasing weather derivatives, the cost of protecting 
against the possibility of weather forecasts being in 
error ($1.06 for an RMS Inter-Diurnal Change of 2°C) 
reduces as the forecast consistency increases, that 
is, as the RMS Inter-Diurnal Change decreases), is 
confirmed.  

To illustrate: 

o For an RMS Inter-Diurnal Change of 1°C, 
the value of the call option reduces to $0.25, but, 

o For an RMS Inter-Diurnal Change of 3°C, 
the value of the call option increases to $1.97, and, 

For an RMS Inter-Diurnal Change of 4°C, the value of 
the call option increases further to $2.93. 

8.    A COMPETITIVE ADVANTAGE 

The American Marketing Association (2006) notes: "a 
‘competitive advantage’ exists when there is a match 
between the distinctive competences of a firm and the 
factors critical for success within the industry that 
permits the firm to outperform its competitors. 
Advantages can be gained by having the lowest 
delivered costs and/or differentiation in terms of 
providing superior or unique performance on 
attributes that are important to customers."  

From the foregoing, it may be said that the value of a 
series of weather forecasts with a low volatility, that is, 
a series of forecasts that display a high level of 
consistency from one day to the next, is greater than 
the value of a series of forecasts with a high volatility.  

This is because the cost of protecting against the 
possibility of such weather forecasts being incorrect 
by adopting a strategy of purchasing weather 
derivatives is lower.  

This means that sellers of weather derivatives, who 
utilise low volatility forecasts to price their call and put 
options, are provided with a competitive advantage 
over sellers of weather derivatives who utilise high 
volatility forecasts. This arises because sellers of 
weather derivatives who utilise low volatility forecasts 
being able to charge lower, and, therefore, more 
competitive, prices to purchasers of weather 
derivatives who wish to use those weather derivatives 
to protect against the possibility of the weather 
forecasts being incorrect.  

9.    CONCLUSION 

The verification data, in showing that the combined 
forecasts are more consistent than the official 
forecasts, are also showing that the combined 
forecasts are more valuable than the official forecasts. 

Furthermore, that the combined forecasts are also 
more accurate than individual currently available 
predictions taken separately, also provides the small 
to medium sized companies involved in weather risk 
management and weather broadcasting with a 
potential competitive advantage (O’Donnell et al., 
2002) over their peers should they choose to adopt a 
strategy of mechanically combining existing 
predictions. 

And, there is a multiplicity of existing predictions to 
choose from (Australian Weather News, 2006; Bureau 
of Meteorology, 2006)). 
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Weather 
Element 

Verification 
Parameter 

Official 
Forecasts 

Combined 
Forecasts 

All Elements % Variance Explained 35.9 42.0 
Rain or No Rain % Correct 71.2 77.9 

√ (Rainfall Amount) RMS Error (mm0.5) 0.964 0.898 
Minimum Temperature RMS Error (ºC) 2.42 2.33 
Maximum Temperature RMS Error (ºC) 3.07 2.83 

Thunder Critical Success Index (%) 14.2 18.8 
Fog Critical Success Index (%) 14.6 16.3 

Table 1 Nearly two years of verification statistics show that the process of mechanically integrating 
(combining) the forecasts substantially improves the officially issued product.  

 

 
 
Figure 1 Percentage variance of observed weather explained by forecasts between 1 and 10 days 
ahead. 
 



 
 
Figure 2 Average change in absolute error through mechanically integrating forecasts for each 
maximum temperature decile range. 


