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1. INTRODUCTION 
     
     Since December 2005, the NCEP (National 
Centers for Environmental Prediction) short-
range ensemble forecasting (SREF) system has 
been updated by constructing new ensemble 
components (Du et al. 2006). This system 
contains perturbed initial/boundary conditions, 
multiple physics, and multimodel. It covers the 
North American continent and the adjacent 
maritime zones. It is important to evaluate the 
performance of precipitation forecasts of the 
SREF, especially probabilistic quantitative 
precipitation forecasts (PQPF). Results of 
precipitation forecasting from this suite of new 
configured operational SREF system were 
verified compared to NCEP Stage IV 
precipitation analyses over the continental 
United States (CONUS). The reliability curves of 
PQPF presented light wet biases. It is of interest 
to conduct calibration for the SREF PQPF and 
examine how much the postprocessing can 
benefit an ensemble system with diversified 
models and physics. 
 
     One tool used to conduct probabilistic 
postprocessing is a feedforward artificial neural 
network (Hsu et al. 1995), which was 
successfully applied to correct PQPF biases in a 
high-resolution (12 km) Regional Spectral Model 
(RSM, Juang and Kanamitsu 1994) ensemble 
system (Yuan et al. 2005, 2007a). Another tool 
is a linear regression model, which was applied 
to calibrate PQPF for heavy precipitation events 
over the American River Basin during the 
Hydrometeorolgical Testbed (HMT) program at 
NOAA/ESRL/GSD (Yuan et al. 2007b). Both 
tools were implemented to calibrate PQPF from 
the SREF system over the CONUS. According 
to hydrological and geographic characteristics, 
bias correction of PQPF was performed for three 
major regions – western, central, and eastern  
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U.S. (Fig. 1.). The two seasons are defined as 
the warm season (April-September) and cool 
season (October-March), respectively. In this 
study, preliminary results are present for the two 
periods: (1) April-September 2006, (2) October-
December 2006. 
 
    Cross-validation was used to compute 
verification scores and attributes diagrams. The 
following results are composited from all months 
during a season in a region. 
 
2. DATA 
 
     Current NCEP SREF system (Du et al. 20006) 
includes 21 members from ETA, RSM models, 
and Weather Research and Forecast (WRF) 
models with two dynamic cores: the Advanced 
Research WRF (ARW) and Nonhydrostatic 
Mesoscale Model (NMM). The system has 
various physical schemes to increase the 
diversity of ensemble construction. Each model 
uses the breeding perturbations to create 
ensemble members. The model output is over 
212 AWIPS grid domain (~ 40 km, 185 x 129 
grids), covering the CONUS. All model runs are 
initialized at 0900 and 2100 UTC with 3-h 
interval output. The observation data come from 
the NCEP 4-km Stage IV precipitation analyses, 
which combine gauge and radar measurements 
over the CONUS with a quality control 
procedure. The 24-h precipitation accumulations 
from the SREF system with lead times of 27, 51, 
and 75 hours (i.e., 1, 2, 3 days) are compared to 
the Stage IV data, which are aggregated to the 
212 AWIPS 40-km grids. 

   
3. METHOD 
        
     A three-layered feedforward neural network 
(Hsu et al. 1995) includes the input, hidden 
(neural), and output layers. The neural network 
is non-linear with a sigmoid function in the 
neural layer. The optimization scheme in this 
neural network uses a linear least square 
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simplex (LLSSIM) algorithm to obtain best 
possible weights for fitting the input and output 
datasets under selected criteria and 
convergence constrains. Through the LLSSIM 
algorithm, the global and near global 
optimization can be achieved.  
 

The output layer node in the neural network is 
only one node. The output data, i.e. the 
calibrated PQPF on every grid pixel, is between 
0 and 1. The target observations (expected 
values) are the dichotomous data, in which the 
value is 1 when the observation exceeds a 
selected precipitation threshold, otherwise 0. 
The objective function is the root mean square 
error (RMSE) between the calibrated PQPF and 
target observations. Therefore, the optimization 
process is equivalent to minimize Brier score, 
which measures the deviation between the 
forecasted and observed probabilities. The 
nodes in the hidden layer are 4 and can be 
increased by convergence criteria. The input 
variables (nodes) in the input layer are 
probabilities (PQPF). On a grid pixel, using the 
21 ensemble members from the SREF system, 
probabilities can be computed for a series of 
selected exceeding precipitation thresholds: 
0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, 
3.0, 3.5, 4.0 inches/24-h (i.e., 0.254, 2.54, 6.35, 
12.7, 19.05, 25.4, 31.75, 38.1, 50.8, 63.5, 76.2, 
88.9, 101.6 mm/24-h). For a given threshold, the 
input variables are seven sequential probabilities 
with the thresholds centered at (the closest) the 
given threshold in this probability series. For 
example, the first seven probabilities are used 
as the input for selected thresholds from 0.01 to 
0.5 inches; at 1-inch threshold, probabilities for 
0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0 inches/24-h 
are used as input datasets.  

 
After training of known input and target 

observations on all grid pixels in a region during 
a season, the weights in the neural network are 
obtained. For the validation period, the 
probabilities for validation data and the weights 
are used to output calibrated PQPF for a 
selected threshold. All training and validation are 
conducted for a single selected threshold. Most 
probabilities meet the monotonic distribution, i.e., 
the probabilities at lower thresholds are not less 
than ones at higher thresholds. A program is 
conducted to check the monotonic distribution of 
probabilities and correct the higher probabilities 
at high thresholds to the probabilities at an 
adjacent lower threshold. 

 

An alternative technique is the multiple linear 
regression method. The linear regression 
equation is simple: 

1
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where M=7, fi(x,t) is the seven ordered input 
probabilities as the input variables in the neural 
network, P(x,t) is the observed probability, and a 
is a constant (error residual). The coefficients bi 
and a are estimated by minimizing the errors of 
the target observed probabilities and the linear 
regression probabilities using N training data 
samples, i.e., the least square function: 
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Unlike the neural network, the output values of 
(3.1) can fall outside of the range of [0 1]. For 
negative values (or > 1), new probabilities are 
set to 0 (or 1).    
 

In each region – western, central, and east 
U.S. (Fig. 1), the validation data is rotated for 
one month of data during a season, and the rest 
months of data are used as the training dataset. 
This is one way to increase sample size for 
obtaining stable weights in both the neural 
network and linear regression equation. In the 
training dataset, dry points having probability 
less than 0.1 are excluded for increasing the 
efficiency of the training in the neural network. 
This exclusion does not alter the weights much. 
All results are composited from monthly 
validation during the warm season (6 months) 
and cool season (3 months). 
 
4. RESULTS 
     

For increasing the training sample size, all 
grid pixels with concomitant observation and 
PQPF are used to derive the weights in the 
linear regression or neural network over a 
region. The cross-validation results using the 
linear regression calibration are shown in Fig. 2-
5. Figure 2 shows the attributes diagrams for the 
calibrated PQPF over the western region during 
the warm season for four selected thresholds 
(0.1, 0.25, 0.5, and 1 inch). The 1:1 diagonal line 
indicates the perfect forecast as the forecast 
probabilities equal to the observed occurrence 
frequencies at each probability category. The 
forecast probabilities from 0% to 100% with 1/21 
interval are grouped to the nearest 10% interval. 
The original PQPF from the SREF system 
shows good forecasts with light wet biases as 
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the reliability curves are below the diagonal line, 
especially for high probabilities categories. The 
calibration shows improved PQPF for thresholds 
0.1, 0.25, 0.5 inches, but with less confidence at 
0.5 inches for a longer lead time of 3 days. For 
higher thresholds (e.g., 1 inch), while the 
reliability curves largely vary and lack high 
probabilities for the lead time of 3 days, the 
calibration only improves the lower probability 
categories but lack reliability for higher 
probability categories. This is due to sample size 
issue over the relatively dry western region 
during the warm season, while rare heavy 
precipitation events occurred during the study 
period. 

 
   The attributes diagrams over the central region 
(Fig. 3) show better calibration results than over 
the western region. For higher thresholds and a 
longer lead time, the calibrated PQPF lacks 
higher probability categories. Again, sample size 
is one important issue. Also, there are more 
uncertainties for precipitation forecasts with 
longer lead times. The best forecasted and 
calibrated region is the eastern region (Fig. 5). 
During the warm season, the eastern region 
possesses more heavy precipitation events. The 
overcorrection of the calibrated PQPF, which 
shows dry biases at higher probability 
categories, occurs for 1-inch threshold with the 
lead time of 3 days. 
 
     The cool season (October-December 2006) 
has similar calibration results over each region 
(not shown) using the linear regression method. 
Improved PQPF is shown in composite reliability 
curves over the CONUS by combing three 
regions (Fig. 5) for all thresholds, except for 1-
inch with a 3-day lead time. The internal bars 
indicate the frequencies of different probability 
categories. After calibration, the conditional 
biases are greatly reduced and the frequencies 
are changed for the calibrated PQPF. The 
reduction of 0% and 100% probability categories 
in the calibrated PQPF leads to increasing grid 
pixels with middle-range probability categories.  
 

The calibration using the linear regression and 
neural network shows slight different results, but 
with more differences for the cool season’s 
calibration, which has only three months in total 
and uses two months as the training data. Figure 
6 indicates that the calibration during the cool 
season using the linear regression method is 
better than using the neural network, in terms of 
overfitting and unstable reliability curves in the 

calibration using the neural network at higher 
thresholds.  

 
Due to a coarse resolution (~ 40 km) and 

small sample size during a season, the 
calibration was conducted over a large region, 
which covers several big watersheds (Fig. 1) and 
has varied climatology over the grid pixels. This 
also limits the applications of the neural network 
to obtain good relationship between the input 
and output data. The calibration needs longer 
period of data in the training over a smaller 
region at current resolution. Another speculation 
is that the calibration of PQPF favors the results 
using the linear regression because the 
observation and the input variables are more 
linear relationship. 
 
5. SUMMARY 
     

Calibration of PQPF for the newly configured 
NCEP SREF system was conducted over three 
major geographic regions based on a linear 
regression model and a three-layered 
feedforward neural network. With seven 
probabilities as input variables and a few months 
of data as the training, both methods showed 
similar results in removing conditional biases in 
PQPF for both cool and warm seasons. The 
neural network is able to derive the non-linear 
relationship between the input and output data. 
However, for shorter data and few samples with 
rare events, a simple linear regression method 
showed better results than the neural network, 
since the artificial neural network had overfitting 
problem due to sample issues. This study used 
the offline weights and cross-validation. Both 
methods can be implemented in a real-time 
operational postprocessing system. The weights 
in the linear regression calibration are more 
easily to be updated and adaptive. On the other 
hand, the biases in original PQPF could be more 
linear pattern with the selected input variables. 
More data from the NCEP SREF with the same 
configuration are desirable to examine the 
calibration procedures. 

 
In the future, as more forecast data or 

retrospective forecasts can be available, 
multivariate (e.g., humidity, wind speeds, and 
temperature) calibration is feasible by using 
more variables associated with PQPF as the 
input in the training dataset. Using multivariate 
calibration, the optimal weights in the neural 
network are expected to improve PQPF and 
outperform the simple linear regression method. 
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With the development of the physical models, a 
fast portable postprocessing procedure is 
needed with less dependency of the training 
data.  
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Fig. 1. The western, central, and eastern regions (left) in the continental United States, by combining 
adjacent watersheds (right) defined by the US Geological Survey (USGS). 
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Fig. 2a. (left four frames) The 24-h PQPF calibration           Fig. 2b. (right four frames), same as Fig. 2a 
over the western region  for the warm season (April-                               but for the lead time of 3 days. 
September 2006) with the lead time of 1 day. The blue 
lines are raw PQPF, and the red ones are after calibration. 
The diagonal line indicates the perfect forecast. 
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Fig. 3a. (left four frames) The 24-h PQPF calibration           Fig. 3b. (right four frames), same as Fig. 3a 
over the central region  for the warm season (April-                               but for the lead time of 3 days. 
September 2006) with the lead time of 1 day. The blue 
lines are raw PQPF, and the red ones are after calibration. 
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Fig. 4a. (left four frames) The 24-h PQPF calibration           Fig. 4b. (right four frames), same as Fig. 4a 
over the eastern region  for the warm season (April-                               but for the lead time of 3 days. 
September 2006) with the lead time of 1 day.  The blue 
lines are raw PQPF, and the red ones are after calibration. 
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Fig. 5a. (left four frames) The 24-h PQPF calibration  
over the CONUS for the cool season (October -         
December 2006) with the lead time of 1 day. The blue
lines are raw PQPF, and the red ones are after calibra
The gray bars are frequencies of raw PQPF, and the
bars are for PQPF after calibration. 
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Fig. 6a. (left four frames) The 24-h PQPF calibration           Fig. 6b. (right four frames), same as Fig. 6a 
over the CONUS for the cool season (October -                               but for the lead time of 3 days. 
December 2006) with the lead time of 1 day. The blue 
lines are raw PQPF, the red ones using linear regression 
calibration, and the green using the neural network.  
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