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1. INTRODUCTION

Range-velocity ambiguity is a long standing problem
of pulsed radar systems and is major issue in weather
radar data quality. For uniformly spaced transmit pulses,
the maximum unambiguous range is given by, ra = cT/2
where c is the speed of light and T is the PRT (Pulse
Repetition Time), while the unambiguous velocity (or
Nyquist velocity) is given by va = λ/4T where λ is the
radar wavelength. These two equations are combined to
express the so called range-velocity dilemma as,

rava =
λc

8
. (1)

Thus for a fixed wavelength, the product rava must
be constant. Increasing ra (va) necessarily decreases
va (ra). Also, as seen from the definitions of ra and
va, as T increases, ra increases while va decreases and
vice versa. As a reference point, consider a typical
PRT of 1 ms at S-band which yields va = 25 ms−1 and
ra = 150 km. Clearly weather phenomena routinely ex-
ceed both of these values. At low elevation angle scans,
radar echoes can be present out to about 460 km if 18 km
agl (above ground level) is used to define cloud top, tak-
ing the earth’s curvature into consideration. The velocity
of weather echoes can exceed 40 ms−1 (about 89 MPH)
but 40 ms−1 is usually considered a sufficient maximum
unambiguous velocity (e.g., va = 40 ms−1 is the FAA re-
quirement for TDWR). An unambiguous range of 460 km
requires T = 3.07 ms whereas an unambiguous velocity
of 40 ms−1 requires T = 0.625 ms. The use of higher
transmit frequencies further exacerbates this discrepancy
by decreasing va.

Several techniques exist to ameliorate the effects of
range-velocity ambiguity in weather radar and they can
be generally divided into four types: 1) phase coding of
the transmitted pulses, 2) dual or staggered PRT, 3) multi-
PRF (pulse repetition frequency) and 4) polarization di-
versity pulse pair.

Recently a new multi staggered PRT technique has
been proposed for range-velocity ambiguity resolution
called SMPRF (Simultaneous Multiple Pulse Repetition
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Frequency) (Pirtilla et al. 2005). Several different PRTs
are chosen and are concatenated to form a block of PRTs,
which are repeated in time. Thus, the time length of the
block of PRTs is (neglecting the transmit pulse width)
T = T1 + T2 + ... + Ti where i is the number of unique
PRTs in the block and T is typically chosen to be equal
to or exceed the desired unambiguous range. A block
of pulses separated by the selected PRTs is repeatedly
transmitted according to the desired dwell time. Time
series with spacing of T are constructed for each sample
time and typically consist of echoes from several reso-
lution volumes. The SMPRF algorithm then uses a ma-
trix inversion technique to solve the set of simultaneous
equations in order to obtain the power estimates for each
resolution volume. The set of constructed time series
can also be used to generate unequally spaced samples
of the auto correlation function for each resolution vol-
ume from which the velocity is estimated. The theory of
the SMPRF technique is presented in (Pirtilla et al. 2005)
where the technique is illustrated with experimental C-
band radar data.

This paper presents a detailed statistical evaluation
of the SMPRF recovered mean power and velocity
estimates using simulated data and examines issues
limiting their recovery. First, the theory of SMPRF
is reviewed and the mean power and mean velocity
recovery techniques are described. Next, the simulation
procedure for constructing the time series is developed.
The simulated time series are then used to evaluated the
mean error and standard deviation of the SMPRF recov-
ered mean power and velocity estimates for a particular
SMPRF scheme. The effect of finite length time series on
the SMPRF algorithm recovery performance is discussed.

2. THE SMPRF ALGORITHM

The SMPRF algorithm entails transmission of multiple
pulses at different PRTs to extend the maximum unam-
biguous measurement range and velocity. Transmission
of this set, or block, of PRTs is repeated and translates
to the dwell time of the radar measurements. Equally-
spaced time series are are constructed from the radar
echoes from which moment estimates are recovered.

To illustrate the operation of the SMPRF algorithm,
consider the example given in (Pirtilla et al. 2005). This



code is comprised of four PRTs: 750µs, 1200µs, 1500µs,
and 1050µs. To simplify notation these PRTs are nor-
malized by the greatest common divisor of the PRTs,
namely ∆t = 150µs. The normalized PRTs are 5, 8,
10 and 7, respectively, and these normalized PRTs are
referred to as the SMPRF code which is annotated as
“SMPRF(150);5,8,10,7”.

A diagram of a block of pulses of the
SMPRF(150);5,8,10,7 code is shown in Fig. 1. The
axis is labeled in normalized time units and the first time
series sample occurs at t = 1. Pulses are transmitted
at times t = 0, −7,−17, −25 and −30. The pulse
at t = 0 marks the beginning of the repetition of the
PRT block shown at times t = −30 through t = −1.
Thus, the block of PRTs then continues with pulses
occurring at times t = 0 + 30i, 5 + 30i, 13 + 30i and
23 + 30i where i is the PRT block index ranging from
0 to M − 1. The number of transmitted blocks, M ,
corresponds to the dwell time for measurements and also
is the length of the time series. There are 30 sample
times and thus 30 possible time series that correspond to
the normalized integer times that occur during one block
of PRTs. However, sampling of the returning echoes
can not happen simultaneously with pulse transmission
and therefore only 30 − 4 = 26 total times series are
gathered for this SMPRF code. Note that a sample time
of 150µs after a transmit pulse corresponds to a range
of cT/2 = 22.5km and therefore the normalized sample
times of 20 and 21 occur at ranges 450 km and 472.5 km
respectively. When a transmit pulse is more than 20
normalized time units from a sample time, there are no
resulting return echoes, i.e., 460 km is considered to be
the maximum possible range for weather echo return.
The arrows in Fig. 1 show that return echo is received
at time t = 1 due to the indicated transmit pulses.
The transmit pulses at times t = −25 and −30 do not
contribute since they occurred more than 20 time units
before the t = 1 sample time. The time series sample at
t = 1 is written

V1(1) = β
(5)
1 (1) + β

(7)
8 (1) + β

(10)
18 (1) (2)

where the subscript indicates the sample time in normal-
ized time units which corresponds to the range resolu-
tion volume and the superscript indicates the pulse PRT
in normalized time units which illuminates the resolution
volume. The “(1)” indicates that it is the first sample of
the time series. For example, β

(7)
8 (1) represents the first

time series element in the return time series correspond-
ing to the 8th resolution volume which is illuminated by
a pulse with PRT length of 7 (normalize time units). The
8th resolution is located at CT/2 = C 8(150µs)/2 =
180 km range. As the block of PRTs is repeated, addi-
tional time series samples are gathered. For the time se-
ries in Eq. (2) additional time series samples are gathered

at t = 1 + 30i, i = 1 to M − 1. The time series corre-
sponding to the sample times t = 1+30i, i = 0 to M−1
is written as,

V1(1 + 30i) = β
(5)
1 (1 + 30i) + β

(7)
8 (1 + 30i)

+β
(10)
18 (1 + 30i) (3)

and with the index understood as

V1 = β
(5)
1 + β

(7)
8 + β

(10)
18 (4)

Similarly, the time series corresponding to sample time
t = 2 consists of samples collected at t = 2 + 30i, i = 0
to M − 1 and is written as,

V1 = β
(5)
2 + β

(7)
9 + β

(10)
19 (5)

Continuing in this way, a set of time series equations is
constructed:

V1 = β
(5)
1 + β

(7)
8 + β

(10)
18

V2 = β
(5)
2 + β

(7)
9 + β

(10)
19

V3 = β
(5)
3 + β

(7)
10 + β

(10)
20

V4 = β
(5)
4 + β

(7)
11

V5 = No data
V6 = β

(8)
1 + β

(5)
6 + β

(7)
13

V7 = β
(8)
2 + β

(5)
7 + β

(7)
14

V8 = β
(8)
3 + β

(5)
8 + β

(7)
15

V9 = β
(8)
4 + β

(5)
9 + β

(7)
16

V10 = β
(8)
5 + β

(5)
10 + β

(7)
17

V11 = β
(8)
6 + β

(5)
11 + β

(7)
18

V12 = β
(8)
7 + β

(5)
12 + β

(7)
19

V13 = No data
V14 = β

(10)
1 + β

(8)
9 + β

(5)
14

V15 = β
(10)
2 + β

(8)
10 + β

(5)
15

V16 = β
(10)
3 + β

(8)
11 + β

(5)
16

V17 = β
(10)
4 + β

(8)
12 + β

(5)
17

V18 = β
(10)
5 + β

(8)
13 + β

(5)
18

V19 = β
(10)
6 + β

(8)
14 + β

(5)
19

V20 = β
(10)
7 + β

(8)
15 + β

(5)
20

V21 = β
(10)
8 + β

(8)
16

V22 = β
(10)
9 + β

(8)
17

V23 = No data
V24 = β

(7)
1 + β

(10)
11 + β

(8)
19

V25 = β
(7)
2 + β

(10)
12 + β

(8)
20

V26 = β
(7)
3 + β

(10)
13

V27 = β
(7)
4 + β

(10)
14

V28 = β
(7)
5 + β

(10)
15

V29 = β
(7)
6 + β

(10)
16

V30 = No data

(6)



It is possible to solve this set of simultaneous time series
equations for the mean power of each of the resolution
volumes, |β(i)

j |2.
As shown in (Pirtilla et al. 2005) and following the

steps in the derivation of the maximum unambiguous ve-
locity for the staggered PRT algorithm described above
(Zrnić and Mahapatra 1985), the maximum unambiguous
velocity for the SMPRF algorithm is given by,

va,SMPRF = ± λ

4min {PRTi − PRTj}
; i 6= j (7)

For the SMPRF(150);5,8,10,7 code with ∆t = 150µs,
this yields va,SMPRF = 89.33ms−1. This value
corresponds to a velocity of about 200 miles per hour
which is more than adequate for the measurement of
weather phenomena.

2.1 Mean Power Estimation

In the following sections, we adopt the following nota-
tion: P represents the true power value, P̃ represents the
estimated mean power value prior to the inversion pro-
cess, and P̂ represents the mean power estimate after the
inversion process.

The mean estimated power for the ith volume corre-
sponding to the jth PRT is,

P̃i =
1
M

M∑
k=1

∣∣∣β(j)
i (k)

∣∣∣2 ; j ∈ {5, 7, 10, 8} ,

i ∈ {1, 2, ..., 20} (8)

The total estimated power Z̃1 corresponding to the time
series V1 is written as,

Z̃1 =
1
M

M∑
k=1

|V1|2

=
1
M

M∑
k=1

∣∣∣β(5)
1 (k) + β

(7)
8 (k) + β

(10)
18 (k)

∣∣∣2 (9)

As a consequence of the independence between measure-
ment volumes all cross products are assumed 0 (Bringi
and Chandrasekar 2001) and Eq. (9) reduces to,

Z̃1 =
1
M

M∑
k=1

∣∣∣β(5)
1 (k)

∣∣∣2
+

1
M

M∑
k=1

∣∣∣β(7)
8 (k)

∣∣∣2 +
1
M

M∑
k=1

∣∣∣β(10)
18 (k)

∣∣∣2
= P̃1 + P̃8 + P̃18 (10)

Thus, the equations for the total estimated powers,
Z̃n;n ∈ {1, 2, ..., 30} corresponding to Eqs. (6) can be
written in matrix notation as,

Z̃ = AP̃ (11)

where Z̃ is the vector of estimated power measurements,
A is the code matrix describing the signal overlays, with
Ai,j ∈ {0, 1}, and P̃ is the vector of calculated mean
powers from each measurement range.

Since the row space of the inversion matrix, A, is
greater than its column space, the system of equations is
over-determined. The Moore-Penrose pseudo-inverse is
used to solve this set of equations, yielding the recovered
mean power vector, P̂.

As seen in Eqs. (6), there are either three or four time
series constructed for each resolution volume depending
on the number of PRTs that illuminate the resolution vol-
ume. For example, for the resolution volume correspond-
ing to normalized sample time 1, the four time series are
β

(5)
1 , β

(7)
1 , β

(10)
1 , and β

(8)
1 , i.e., one time series corre-

sponding to each PRT in the block of PRTs used. Since
these time series are samples from the same assumed sta-
tistically stationary medium, the mean power estimates
become equal in the limit of M (Bringi and Chandrasekar
2001), i.e.,

1
M

M∑
k=1

∣∣∣β(5)
1 (k)

∣∣∣2 =
1
M

M∑
k=1

∣∣∣β(7)
1 (k)

∣∣∣2
=

1
M

M∑
k=1

∣∣∣β(10)
1 (k)

∣∣∣2
=

1
M

M∑
k=1

∣∣∣β(8)
1 (k)

∣∣∣2 (12)

However, when calculating the average powers for finite-
length time series, these estimates will not be equal since
they are estimated from different samples separated in
time.

To illustrate this point, consider the first and sixth
equations in the set of measurement equations for the
SMPRF(150);5,8,10,7 code, with time series time indices,
k, removed for convenience,

V1 = β
(5)
1 + β

(7)
8 + β

(10)
18

V6 = β
(8)
1 + β

(5)
6 + β

(7)
13

(13)

where β
(5)
1 and β

(8)
1 are two time series for resolution

volume 1. The mean powers corresponding to β
(5)
1 and

β
(8)
1 are assumed equal in the matrix inversion process

for recovery of the mean power estimates. The difference



in estimated average power values from these two time
series will cause errors in the power recovery process.
As will be shown, these errors can be quite large and bias
the mean power estimates, P̂ .

2.2 Mean Velocity Estimation

The SMPRF velocity recovery is based on the estima-
tion of unequally time spaced lags of the autocorrelation
function of the time series for each resolution volume.
Consider β

(5)
1 , β

(7)
1 , and β

(10)
1 , β

(8)
1 , which which are the

time series for the first resolution volume. Fig. 2 shows
the individual time series that results from two blocks of
SMPRF(150);5,8,10,7 code. The arguments of the time se-
ries are given in normalized time units. These four time
series can be used to calculate various lags of the auto
correlation function of β1. For example consider the time
series β

(5)
1 and β

(7)
1 . Part of the auto correlation function

of β1 can be calculated as,

R1(5 + k30) =
M−1∑
i=0

β
(5)
1 (i30)β(7)

1 (5 + (i + k)30)

(14)

Thus, the autocorrelation lags that can be calculated from
this product are 5+k30 where k can range from−(M−1)
to M − 1.

Again, time series from different resolution volumes
are independent and their cross correlation is zero in the
limit of M. However, for finite length time series, these
cross correlation products will not be zero and generate
“noise”. This noise is a limiting factor for the mean ve-
locity recovery process. As will be illustrated later in
this report, the variance of the noise term in the equations
above depends upon the amount of overlaid power.

The range of lag values estimated and used in the esti-
mation of the mean velocity using the SMPRF algorithm
is limited by the coherence time. Coherency time, TD, is
defined as the time for which magnitude of the autocorre-
lation drops to e−1 (Bringi and Chandrasekar 2001) and
is given by,

TD =
λ

2
√

2πσv

(15)

The block length of the SMPRF(150);5,8,10,7 code is
4.50 ms. For a radar operating at C-band (for this study,
λ = 5.6cm) and a weather signal spectrum width of 2 ms,
the coherence time is 3.01 ms. For a spectrum width of 4
ms−1, the coherence time drops to 1.51 ms. Given these
parameters, we choose to constrain the limits of ACF lags

Volume(i) Lag Values(n)
1,2,3,4,9 5, 7, 8, 10, 13

5,13 8, 10, 12
6 5, 7, 8, 10

7,12 5, 8, 13
8,18 7, 10, 13
10,17 5, 7, 12

11 5, 7, 8, 10, 12
14,15,16,19 5, 7, 8, 10, 12, 13

20 5, 8

Table 1: ACF lag values computed using
SMPRF(150);5,8,10,7 code.

used in the estimation of the mean velocity to 15 in nor-
malized time, or 15 X 150µs = 2.25 ms. Empirical SM-
PRF simulations show that good velocity recovery per-
formance was attained when used ACF lags are within
about 75% of the coherence time. Thus for the following
simulation studies of SMPRF(150);5,8,10,7, ACF lag times
less than 2.25 ms are used for velocity recovery.

Using the example SMPRF(150);5,8,10,7 code, the set
of ACF lag values available for each resolution volume
is given in Table 1. As seen in Table 1, different resolu-
tion volumes will have both different number of available
AFC lags as well as different ACF lags. Note that the lack
of radar capability to receive while transmitting accounts
for the lower number of recovered ACF lags in certain
volumes.

Once the ACF lag values are estimated, the mean
velocity is then estimated. Next, a technique for velocity
estimation is examined in the following section.

2.3 Spectral Maximum Technique

The technique used in (Pirtilla et al. 2005) to estimate
mean velocity from unevenly sampled ACF lag values
uses the Discrete Fourier Transform (DFT) of the inter-
polated ACF. Missing values of the AFC are interpolated
with zeros and the DFT is then taken. The location of the
peak of the power spectrum is taken to be the estimate for
the mean velocity (Roberts and Mullis 1987).

The power spectrum is calculated as,

S̃i [k] =
N−1∑
n=0

R̃i (n) e−
2πj
N nk; k = 0, ..., N − 1 (16)

where N is the number of points used in the DFT calcu-
lation.

The following simulation illustrates this velocity esti-
mation technique. In Fig. 3, the power spectrum (zero



padding is used so that NFFT = 512) of a simulated
64-point weather signal is shown, with σv = 2 m/s,
v = 30 m/s, SNR = ∞, and PRT = 150 µs. Then, the
ACF of the simulated signal is calculated. The unevenly
spaced samples of the ACF of the signal calculated are
obtained by selecting the desired ACF values according
to Table 1. All other ACF lags are set to zero. This is
equivalent to multiplying the calculated ACF function by
a binary mask, M1 [k], which is given by,

M1 [k] = {1 0 0 0 0 1 0 1 1 0 1 0 0 1} (17)

where M1 [−k] = M1 [k]. The member of the autocorre-
lation function can be listed as

R1 [k] =
{
P̂1 0 0 0 0 R1 [5] 0 R1 [7] R1 [8]

0 R1 [10] 0 0 R1 [13]
}

(18)

where P̂1 is the mean power estimate and R1 [−k] =
R∗

1 [−k]. The power spectrum of the binary masking se-
quence is shown in Fig. 4. Mathematically, the power
spectrum of the unevenly spaced ACF spectrum, S1 is
formed by the convolution of the weather power spec-
trum, X, and binary mask spectrum, M as,

S̃1 = M1 �X (19)

where � denotes convolution.
The power spectrum of the simulated weather signal,

which is the DFT of R1 [k], is shown in Fig. 5. Compar-
ing Fig. 5 to Fig. 3, it is seen that the peak of the spectra
of Fig. 5 gives the velocity of about v̂ = 28.6 ms−1.

3. SIMULATION OVERVIEW

The time series simulation technique is described in
Chandrasekar et al. (1986). For each range volume, a
time series, α, is generated with time spacing equal to
the greatest common divisor of PRTs, in this case, ∆t =
150 µs. The time series simulation length is equal to
the length of the SMPRF code times the number of PRT
blocks transmitted. In the case of the SMPRF(150);5,8,10,7

code with 15 blocks transmitted, the dwell time is 30 ×
15 = 450 × 150 µs = 67.5ms. The time series,
β

(j)
i ,corresponding to the ith volume corresponding to

the jth PRT are selected subsets of the time series α, with
one element selected from each block and are thus spaced
one code length apart (in this case, 4.5 ms). For example,
for β

(7)
6 , the time series corresponding to the6th measure-

ment volume relative to the pulse of length 7 normalized
time units, i.e., the 4th PRT in the SMPRF(150);5,8,10,7

code, is β
(7)
6 = {α29, α59, α89, ..., α449}. Again, the

length of these return time series are equal to the number
of code blocks transmitted. This simulation procedure

ensures proper time spacing and correlation between the
time series constructed for a volume.

In order to evaluate the mean power and velocity
recovery statistics, an input power versus range profile is
selected. The recovery statistics will vary according to
the input power range profile chosen and we give three
example profiles here that demonstrate the expected
quality of the recovered power and velocity. The three
power profiles are: a flat profile with all ranges set to
20 dBZ, a single-peak triangular profile with 50 dBZ
power level separation, and a double-peak triangular
profile with 15 dBZ power level separation. The SNR in
each case is infinite. It was shown through simulation
that the performance of the mean velocity estimation is
independent of the input mean velocity value, between
−va and +va and thus, a flat mean velocity profile was
selected for input with velocity value set to va/2. A
spectrum width of 2 m s−1 is selected for all ranges.
The radar frequency is 5.6 GHz (λ = 5.36 cm). Fifteen
blocks are used for the SMPRF(150);5,8,10,7 code, which
translates to a dwell time of 67.5 ms and two hundred
iterations were run to generate statistics. In the figures
illustrating mean power and mean velocity profile
recovery, the vertical box dimension represents one stan-
dard deviation while the horizontal line within the box
marks the mean estimate. The input power and velocity
profiles are displayed in each case, superimposed to illus-
trate the corresponding power separation between ranges.

3.1 Simulation Results

The simulation results for the estimation of mean
power and velocity values using the SMPRF(150);5,8,10,7

code with maximum unambiguous measurement range of
460 km are seen in Fig. 6 through Fig. 11. For the 20
dBZ flat input power profile, Fig. 6 shows unbiased mean
power recovery with standard deviation values around 4
dBZ for each measurement range. Fig. 7 shows biased
mean velocity recovery performance with standard devia-
tions between 30 and 40 ms−1. Reasons for this behavior
are described in the next section.

For the 50 dBZ triangular input power profile, Fig. 8
shows unbiased mean power recovery and standard devi-
ation values less than 5 dB in those ranges with powers
35 dBZ and above. For those ranges with less power, the
performance is biased with standard deviation values be-
tween 10 and 15 dB. Fig. 9 shows unbiased mean velocity
recovery and standard deviation values less than 0.1 ms−1

for the ranges whose powers are 35 dBZ and above. Mea-
surements in ranges whose power values are below 35
dBZ exhibit biasing and standard deviation values be-
tween 40 and 50 ms−1. These results suggest the ranges
with lesser power are being dominated by the noise gen-
erated in the correlation process.



For the 15 dBZ double triangular input power profile,
Fig. 10 shows unbiased performance and standard devi-
ations which increase from less than 1 dB to around 8
dB as the power separation between measurement ranges
increases. Fig. 11 shows biasing of the mean velocity
estimates as the power separation between measurement
ranges increases and standard deviation values increasing
from about 10 ms−1 to about 50 ms−1.

The results show that the SMPRF(150);5,8,10,7 code
scheme can recover reasonable power estimates only for
those resolution bins with the highest power. When the
power of a resolution bin drops to about 15 to 20 dB
below the highest power bin, the standard deviation of
the power measurements can become 3dB and much
greater depending on the simulated power range profile.
The recovered velocities only look reasonable for the
triangular power profile of Fig. 9 for the higher power
resolution volumes. In all other locations, the recovered
velocities have large biases and standard deviations.
Reasons for these effects are illustrated and discussed in
the following section.

a. Effect of finite-length time series

The received voltage at the radar is a complex stochas-
tic signal, considered as one realization of the underly-
ing stochastic process. Physically, the stochastic process
is driven by the reshuffling of the precipitation particles
during the dwell time of the radar (Bringi and Chan-
drasekar 2001). The stochastic process is considered sta-
tionary so that the mean of the time series of the mag-
nitude squared voltage is proportional to power. Since
the complex voltages (time series) are finite in length,
the mean of the magnitude squared voltage is an estimate
of the true power. It is well known that this power es-
timate has unbiased mean and standard deviation which
depends upon the spectrum width. In the SMPRF algo-
rithm, multiple time series representations for a resolu-
tion volume are created. For example, for resolution vol-
ume 1 for SMPRF(150);5,8,10,7, the time series are β

(5)
1 ,

β
(8)
1 , β

(10)
1 , β

(7)
1 . Even though these time series are from

the same resolution volume and are correlated (depend-
ing on the spectrum width), the mean power estimates are
not equal, in general. Since the matrix inversion process
is based on the equality of these powers (i.e., Eq. (12)
holds true for each resolution volume), this power in-
equality produces errors in the mean power estimates.
Power values for each of the 20 resolution volumes us-
ing the SMPRF(150);5,8,10,7 code can appear up to a max-
imum of 4 times in the inversion equation, as shown by
Eq. (6). Thus, this assumption of power equality of time
series from the same resolution volume is one source of
error in the power recovery process. Another error source

in SMPRF power recovery due to finite-length time series
is the assumption that the cross products of the power cal-
culation in Eq. (12) are zero. In the following analysis,
these two error sources are separated and quantified.

Eqs. (9) and (10) are written under the assumption that
the cross-power terms between the resolution volumes
are equal to zero, i.e,∣∣∣∣∣∑

k

β
(j)
i (k)β(l)

n (k)

∣∣∣∣∣
2

= 0; i 6= n (20)

For finite-length time series, this will not be true. To
illustrate this error source, the simulation procedure is
changed. Return time series are still generated, but this
time, the mean power values of each time series are cal-
culated individually before being overlaid and separated
by the inversion process. instead, power values were gen-
erated, overlaid, and separated by the inversion process.
This eliminates contributions to the total power due to
the cross products of the time series. The results for this
simulation using the 50 dBZ triangular profile described
above are shown in Fig. 12. Fig. 12 illustrates error in
the recovery of the mean powers using the SMPRF al-
gorithm when the time series cross-correlation terms be-
tween resolution volumes are set to 0. The results shown
in Fig. 12 are similar to those in Fig. 8. This suggests the
cross-correlation terms are a secondary source of error in
the SMPRF mean power recovery process at least for the
simulations parameters used here.

To quantify the expected power difference between the
four power estimates for a particular resolution volume,
50,000 time series simulations were run for a spectrum
width of 4 ms−1. For each simulation, the six pairwise
power ratios are calculated:

P (i, j) = 10 log10

[ |βi
1|2

|βj
1|2

]
;

i, j ∈ 1, 2, 3, 4, i 6= j (21)

where the “i” and “j” stand for the PRTs 750 µs, 1200 µs,
1500 µs, and 1250 µs. The mean and standard deviation
are calculated for each ratio. The mean ratios are 1 (0 dB)
as expected. The standard deviations are given in Table 2.
For the used simulation parameters, the average standard
deviation is about 1 dB or 25%.

Next, the power of the time series that represent the
same resolution volume are forced to be equal so that the
sole error source is now power from the cross product
terms. The time series are scaled such that equality exists
between the mean power estimates made from each of the
time series according to the following equation,

β̃
(j)
i =

√
Pi

P̂i

β
(j)
i (22)



PRT 750 µs 1200 µs 1500 µs 1250 µs

750 µs 0 0.8682 1.1705 0.6889
1200 µs 0.8682 0 1.0186 0.9854
1500 µs 1.1705 1.0186 0 0.9578
1250 µs 0.6889 0.9854 0.9578 0

Table 2: Standard deviation of mean power esti-
mates, in dB, used in the matrix inversion process
for first resolution volume for the 50 dBZ triangular
power profile.

where Pi is the input (true) power at measurement range
i and P̂i is the calculated power at measurement range
i. This scaling eliminates the differences in inversion
variables and isolates the finite-length time series effects.
The results of this simulation using the 50 dB triangular
power profile are shown in Fig. 13. As can be seen,
the recovery performance of the mean powers has
improved as compared to Fig. 12 This again indicates
that inequality of the powers of the time series is the
dominant source of error in the SMPRF algorithm for the
simulation parameters used.

4. CONCLUSIONS

The simultaneous multiple pulse repetition frequency
(SMPRF) for range-velocity ambiguity mitigation was
evaluated via time series simulations. Time series cor-
responding to several modeled power range profiles were
simulated for each range resolution volume, overlaid ac-
cording to the radar pulsing scheme and then the SM-
PRF algorithm was applied to recovery the known simu-
lated mean powers and velocities. The recovered powers
and velocities were compared to the true simulated pow-
ers and velocities so that biases and standard deviations
could be calculated. The wave length used for the simula-
tions was 5.6 cm but the results are general enough so that
the performance of the SMPRF algorithm at other wave
lengths can be judged.

The simulations studies show that there are indeed lim-
itation to the SMPRF technique and these limitations can
be severe. In general it was shown that separation and
recovery of overlaid echoes is only good for power ra-
tios less than about 15 dB depending on the SMPRF code
used and the number of overlaid echoes. When there is
significant echo overlay along the radar radial, good ve-
locity estimates are only available for the highest power
resolution volumes and even this untrue for some of the
simulated radar reflectivity profiles presented.

The theory behind the SMPRF algorithm does show
that unlimited unambiguous range and velocity can be
obtained when the analysis is done with expectations

of random variables that model the stochastic process
of weather radar signals. Ensemble statistical proper-
ties, such as the correlation product of two independent,
uncorrelated processes is zero, are used in the theoret-
ical development; however, for finite length time se-
ries representations of these processes, such correlation
products are in general not zero and must be taken in
to account. For example, consider the SMPRF matrix
inversion process for recovering radar power. For the
SMPRF(150);5,8,10,7 coded analyzed, there are typically
four times series representations of the statistical pro-
cesses of a common resolution volume corresponding to
each of the four PRTs used. Even though these time series
are measured in close time proximity and are correlated,
their mean powers are in general not equal. The degree
of power inequality depends upon the spectrum width of
the weather echo and the radar times series length. For
typical radar measurement parameters of dwell time of
64 ms and a spectrum width of 4 ms−1, the mean power
differences among the four time series is about 1dB or
25%. The SMPRF matrix inversion process assumes that
these powers are equal. This is likely the limiting factor
in the power recovery process for most realistic weather
range profiles. However, If spectrum widths are very nar-
row, the assumption that the cross terms in the correlation
products are zero may become the dominate source of er-
ror rather than the assumption of equality of powers of
time series that represent the same resolution volume.

The SMPRF velocity recovery technique is limited by
a similar mechanism. Several “first lag” estimates of the
auto correlation function for a radar resolution volume
are possible since each resolution volume has four time
series representations for the case of SMPRF(150);5,8,10,7.
Correlating these time series yields several unequally
spaced estimates of the auto correlation function. As
shown, each time series gathered at particular sample
time can also contain echoes from several resolution vol-
umes. Since the overlaid echoes are from physically sep-
arate resolution volumes, the overlaid time series are in-
dependent and their cross correlations are zero, at least
asymptotically. Since the time series are finite, these
cross correlations are not zero and in effect mask the de-
sired “first lag” correlation in noise proportional to the
strength of the overlaid echoes. This “correlation noise”
then limits the accuracy of the recovered velocities. The
extent of the limitation depends on the number of overlaid
echoes and their strength. For the SMPRF(150);5,8,10,7 al-
gorithm analyzed, if there are significant overlaid echoes
throughout the radar range (for example see Figure 6), the
velocities are recovered well nowhere.
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Figure 1: Illustration and operation of the SMPRF code; 5, 8, 10, 7 PRTs, ∆t = 150µs.

Figure 2: Diagram of the four time series for resolution volume one for SMPRF(150);5,8,10,7 code. The
argument of the time series members is in normalized time units.

Figure 3: Velocity spectrum of simulated weather signal.



Figure 4: Power spectrum of binary mask sequence.

Figure 5: Power spectrum of weather signal recovered using the SMPRF(150);5,8,10,7 code, SNR = ∞.



Figure 6: Mean power profile recovery for 20 dBZ flat profile, SMPRF(150);5,8,10,7 code.

Figure 7: Mean velocity profile recovery for 20 dBZ flat profile, SMPRF(150);5,8,10,7 code.



Figure 8: Mean power profile recovery for 50 dBZ triangular profile, SMPRF(150);5,8,10,7 code.

Figure 9: Mean velocity profile recovery for 50 dBZ triangular profile, SMPRF(150);5,8,10,7 code.



Figure 10: Mean power profile recovery for 15 dBZ triangular profile, SMPRF(150);5,8,10,7 code.

Figure 11: Mean velocity profile recovery for 15 dBZ triangular profile, SMPRF(150);5,8,10,7 code.



Figure 12: Mean power profile recovery for 50 dBZ triangular profile, SMPRF(150);5,8,10,7 code, using point
power values.

Figure 13: Mean power profile recovery for 50 dBZ triangular profile, SMPRF(150);5,8,10,7 code, using scaled
time series.


