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1. Introduction 
 
One of the most important factors that 
determines meteorological analysis 
fields in a data assimilation system is the 
background covariance matrix.  Not only 
do the correlations in this background 
covariance matrix perform the spatial 
spreading of information at the 
observation points throughout the model 
domain including data-sparse areas, but 
they also play a decisive role in how to 
smooth the analysis increments in data-
dense areas. 
 
One of the key issues for data 
assimilation is the specification of the 
background error covariance.  There are 
classic methods to estimate the 
background error covariance mainly 
based on the study of forecasts started 
from the analyses, like the NMC method 
(Parrish and Derber 1992). Their 
theoretical foundation is now considered 
rather unclear. 
In this research, we proposed a new 
method to estimate background error 
covariances, namely a time-phased 
ensemble forecast system, which was 
recently developed at NOAA’s Global 
Systems Division (GSD) of the Earth 
System Research Laboratory (ESRL).  In 
this research, we will examine how well 
this newly structured background error 
covariance can capture the flow 
dependent mesoscale features.  We will 
also compare the covariance structure 

obtained from the time-phased ensemble 
method with that from NMC method. 
 
2. Time-phased model ensemble 

system 
 
The background error statistics are 
estimated from a set of model forecasts 
initialized at different times, but 
validated at the same time, forming a 
time-phased ensemble system (Lu et al. 
2007).  Because these initial 
perturbations are generated from 
different forecast initialization cycles, 
the background error covariance 
computed from such a statistical sample 
possesses flow-dependent information in 
the model.  Mathematically, the 
background error covariance matrix 
from the time-phased ensembles can be 
expressed as  
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where )(tf

τX  is a forecast initialized at 
prior τ  hour and M  is a model 
propagation operator.  The background 
error covariance is calculated with N  
member samples, denoted by the angle 
brackets. 
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3. Calculation of background error 
covariance using time-phased 
ensembles 

 
Because of the huge dimension of error 
in a covariance matrix (on an order of 

77 1010 ×  for realistic atmospheric 
application (Courtier 1997), two model-
state vectors will be considered.  
Background error covariances (cross-
covariance, spatial covariance, and 
cross-spatial covariance) as well as 
variance can be derived from these two 
model-state components (Zhang 2005), 
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where x and y  are two state variables at 
the grid-point ( )111 kji and ( )222 kji .  N  
is the total ensemble members, and n  is 
each member in the time-lagged 
ensemble pool.  These covariances and 
variance are related to each element in 
the background error covariance matrix.  
The diagnosis of the physical features of 
these two-dimensional background error 
fields will give us valuable insight into 
the behaviors of the background errors 
recovered from time-phased ensembles. 
 
 
4. Physical diagnoses 
 
The background error covariance 
typically reflects underlying 
background- balanced dynamics (Daley 
1991).  Special attention is focused on 
the discussion of this characteristic of 
background error covariance by 
comparing it with the diagnosis of 
potential vorticity (PV) from analyses.  

Typically the PV anomaly indicates an 
active weather event. 
 
Fig. 1 shows the 300-hPa estimated 
background error covariance between U 
and T at every 6 hours for 24 hours.  The 
covariance structure is consistent with 
the underlying background dynamics 
(PV) at respective times.  The magnitude 
of the background error increases as the 
storm intensifies. The slight shift in the 
maximum of background error from the 
PV centers may be due to two factors: 1) 
the background errors tend to occur at 
locations where PV displays the greatest 
gradient; 2) the background errors 
recovered by the time-phased ensemble 
method contain a considerable amount 
of mesoscale motions, which tend to 
cause deviation from pure-balanced 
dynamics.  It is suggested that 
covariances estimated from time-phased 
ensembles are flow-dependent.   This 
follows the background-balanced 
dynamics at the relevant times.  The 
cross-spatial covariance between U at 
point C (denoted in Fig. 1c) and T at any 
300- hPa points valid at every 6 hours 
for 24 hours is shown in Fig. 2.  One can 
see that the cross-spatial covariance also 
closely follows background dynamics, 
and its magnitude increases when as the 
storm intensifies. 
 
 
5. Comparison of time-phased 

ensembles with NMC 
 
The well-known NMC method is based 
on the assumption that the differences 
between a pair of forecasts valid at the 
same time, with different lead times, 
have a similar structure to those of the 
short-range forecast errors.  
 



In a system like the atmosphere, the 
actual background errors are expected to 
depend closely on weather situations.  
This is essentially the notion of flow-
dependent background error covariances.  
The covariance structures from the NMC 
(Figs. 3b and d) are much smoother than 
those from the time-phased ensemble 
method (Figs. 3a and c).  They may 
represent climatological features, rather 
than a particular weather system.  The 
covariance structure from time-phased 
ensembles is not only fully dependent on 
the background-balanced dynamics, but 
they are also situational-dependent.  
However, those from the NMC method 
do not show any agreement with the 
situational background- balanced 
dynamics.   
These analyses indicate that background 
error covariance constructed from time-
phased ensembles may provide a better 
short-range NWP because they closely 
depict background weather situations as 
well as the time evolution of these 
weather systems. 
 
 
6. Conclusions 
 
In this research, we present a method 
using time-phased ensembles to estimate 
background error covariances.  This 
method can not only be implemented 
effectively on-line (in the sense of 
parallel with model runs), but can also 
capture the detailed mesoscale structure 
in background error covariance.   
 
The structure of mesoscale error 
covariance estimated from the time-
phased ensemble method is flow-
dependent and highly anisotropic, which 
is determined by the underlying 
governing dynamics and associated error 
growth.  The mesoscale error covariance 

showed strong signals in the vicinity of 
the greatest PV gradient and active moist 
convection areas. 
 
The NMC method renders a smoothed, 
large-scale structure in the background 
error covariance due to near-
climatological averaging of day-to-day 
weather variability.  On the other hand, 
the background error covariance 
recovered from time-phased ensembles 
is situational-dependent and keeps the 
variability in the atmosphere.   
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Fig. 1 The 300-hPa estimated background error covariance between U and T 
at (a) 00Z 4, (b) 06Z 4, (c) 12Z 4, (d) 18Z 4, and (e) 00Z 5 JAN.  Positive 
values are shaded in red and negative values are shaded in blue.  The 
covariance between -0.5 and 0.5 is not shaded.  PV (gray solid line) is also 
plotted as a reference of the background balanced dynamics.  Point C 
(maximum positive covariance) in (c) will be referred to in Fig. 2. 
 
 

 



 
 
 

 
 

Fig. 2 The 300-hPa estimated background error cross-spatial covariance 
between U at point C and any T at (a) 00Z 4, (b) 06Z 4, (c) 12Z 4, (d) 18Z 4, 
and (e) 00Z 5 JAN.  Positive values are shaded in red and negative values are 
shaded in blue.  The covariance between -0.5 and 0.5 is not shaded.  PV (gray 
solid line) is also plotted as a reference of the background balanced dynamics. 
 

 
 



 
 
 

 
 

Fig. 3 The 300-hPa estimated background error covariance between U and V in 
(a), (b) and V and T in (c), (d) at 12Z 4 JAN.  Left panel (a and c) is from the 
time-lagged ensemble method and the right panel (b and d) is from the NMC 
method. PV (gray solid line) is also plotted as a reference of the background 
balanced dynamics. 

 


