
Time-frequency localization and long- and short-term memories in the 
GFS precipitation forecasts  

 
Lu, C., H. Yuan, S. Koch, E. Tollerud, J. McGinley, and P. Schultz 

 
NOAA Earth System Research Laboratory and CIRA, Colorado State University 

 
 
1. Introduction 
 
Precipitation possesses its own temporal 
variability, such as seasonal and diurnal 
cycles.  It is important for numerical 
weather prediction (NWP) models to 
correctly capture these natural 
variabilities.  Meanwhile, due to 
uncertainty in the forecast model, there 
are day-to-day random forecast errors.  
Hence, a given time series of 
precipitation forecast errors will most 
likely consist of variability on several 
different scales.  Distinguishing these 
signals and variabilities from this 
complex dataset may provide us with 
crucial insight into the temporal 
characteristics of forecast errors.  
 
The first issue we investigate in this 
study is the frequency of our current 
precipitation forecast errors have, and 
the time at which these errors occur.  In 
another words, we want to know what 
time scale the NOAA/NCEP’s Global 
Forecast System (GFS) precipitation 
forecast errors project to, (e.g., daily, 
weekly, or otherwise), and whether these 
errors occur on a certain day, or in a 
particular month, or season.  The time 
scale of errors may provide us with the 
information about the type of 
precipitation systems that the GFS may 
have difficulty forecasting.  The time 
information may help us pinpoint the 
possible physical reasons why the GFS 
generates these large forecast errors.   
 

Once we identify different time scales of 
forecast errors, we would like to know if 
these errors possess any time memory.  
Even errors that appear to be random 
may still have some built-in persistence 
or correlation.  This is the basic concept 
of forecast error memory.  The different 
length of these memories may indicate 
possible model intrinsic deficiencies in 
different precipitation parameterizations 
corresponding to different physical 
scales.   
 
In this study, we will use a continuous 
wavelet to conduct the time-frequency 
localization of precipitation forecast 
errors.  We will then conduct an analysis 
for the multi-moment correlation 
function of the forecast errors.  This is 
known as the Hurst parameter analysis 
(Lu and Koch 2007).  From these 
analyses, we may gain a better 
understanding of temporal 
characteristics of precipitation forecast 
errors. 
 
   
2. Forecast model and observational 
data 
 
The NOAA/NCEP GFS daily 
precipitation forecasts are verified 
against observations considered to be 
verification truth.  These observations 
are a set of global satellite precipitation 
estimates, produced and archived at the 
University of California-Irvine.  This 
satellite data product is called 

P2.33 



PERSIANN.  Detailed information about 
this dataset is described in Yuan et al. 
(2007). 
 
The GFS data is archived on a 1x1 
latitude/longitude degree grid, while the 
satellite estimates are archived on a 
0.25x0.25-degree grid.  A 24-h 
precipitation accumulation from GFS’s 
1-day forecast and from PERSIANN 
estimates are used.  
 
    
3. Spatially averaged time series of 
precipitation forecast errors 
 
Root mean square (RMS) errors of GFS 
daily precipitation forecasts are 
computed for 2005-2006 by verifying 
the GFS 1-day precipitation forecasts 
against UC-Irvine’s PERSIANN satellite 
observations. These errors are then 
averaged over different geographic 
areas.   Figure 1 shows the definition for 
various geographic areas over which 
spatial averaging is conducted.  The 
classification of different geographic 
areas is based on considerations of 
continents vs. adjacent oceans (e.g., 
CONUS vs. Pacific/Atlantic Oceans), 
northern and southern hemispheric 
counterparts of continents and oceans 
(e.g., North America vs. South America; 
the North Pacific vs. the South Pacific), 
and tropics vs. extratropics (e.g., 
equatorial vs. mid-latitude regions). 
 
Spatially averaged time series of 
precipitation forecast errors for four 
different geographic areas are shown in 
Fig. 2.  They are: North America (Fig. 
2a), South America (Fig. 2d), the North 
Pacific (Fig. 2c), and the South Pacific 
(Fig. 2d).  Daily forecast error variances 
superimposed on seasonal variation can 
be seen in these figures, except for the 

South Pacific in Fig. 2d, where the 
winter dry season signal is very weak 
and brief.  North America and South 
America have opposite seasons, as 
expected.  In general the daily error 
variances are larger over the continents 
than those over the oceans. 
 
  
4. Time-frequency localization of GFS 
forecast errors 
 
Continuous wavelet (CW) analyses of 
these error time series are conducted.  
These analyses project the GFS 
precipitation forecast errors onto both 
time and frequency subspaces.  
Mathematically, the wavelet 
transformation can be expressed as 
 
f̂ (!,t) = f (" ) #!,t

*$ (" ) d" ,            (1) 
 
where !",t

*  is a wavelet kernel function, 
the asterisk stands for a conjugate, f (! )  
denotes the time series, and f̂ (!,t)  is 
wavelet time-frequency decomposition 
of the original time series. 
 
Figures 3a-d show the error power as a 
function of time (abscissa) and period 
(ordinate).  The most noticeable but not 
surprising result from these analyses is 
the error scale separation: errors with a 
time scale of 1-10 days and seasonal 
errors (~150 days).  As before, the 
forecast for the South Pacific (Fig. 3d) 
presents a vague seasonal change, with a 
time scale that extends to more than 200 
days.  The North American Continent 
(Fig 3a) peaks its forecast errors in the 
northern summer, while South America 
(Fig. 3b) peaks its errors in the southern 
summer.  In addition, the North Pacific 
Ocean (Fig. 3c) peaks its seasonal error 
about one month (in May) earlier than 



that for the North American Continent 
(in June).  
 
Short time-scale forecast errors typically 
occur in the time periods of 1-10 days; 
most of them peak around two days.  
These errors may represent synoptic-
scale or mesoscale forecast errors.  
Taking North America as an example, 
there are large signals occurring between 
the months of April and May likely 
related to severe spring storms in the 
Central Plains; in the months of August 
to October related to landfall of tropical 
storms and North American monsoon 
rainfall; and in the months of December 
and January related to North American 
winter storms. 
 
 
5. Hurst parameter analysis 
 
Finally, we compute the Hurst 
parameters to determine if different 
scales of forecast errors possess any time 
memories.  The central idea is to 
compute multimoments of a correlation 
function (structure function), Sq (! ) , for 
different lags ! : 
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where  !(t)  is the error time series and 
angle brackets indicate an ensemble 
average.  According to the similarity 
theory, if such computed correlation 
function can be scaled by 
 
Sq (! ) =Cq!

" (q)
,      q # 0,                   (3) 

 
where Cq  is a proportional coefficient 
and ! (q)  is a scaling power function, the 
process is said to be self-similar or self-

affine.  The Hurst parameter is defined 
as H (1) = ! (1)  (the first multifractal 
parameter).  If ! (1)  is a linear function 
on a log-log plot of S

1
(! ) , then 

persistence (memory) exists.  High 
moments of Sq (! )  provides an 
indication if such persistence will break. 
 
Figures 4a-4d show the multimoment 
correlation function on a log-log plot for 
North America, South America, the 
North Pacific, and the South Pacific, 
respectively.  First, we can see [by 
examining the higher moments of Sq (! ) ] 
that there exists an error scale break at 
about 10 days for all these geographic 
areas.  This is consistent with the 
wavelet analysis results obtained in the 
previous section.  Second, these forecast 
errors possess a seasonal memory of 
about 150 days, although errors in the 
Southern Hemisphere do have a 
tendency to correlate slightly longer.  
Third, a short memory of 4 days (slightly 
longer for oceanic areas) can be found in 
these forecast errors.  
 
 
6. Conclusions 
 
The GFS precipitation forecast errors 
possess two distinctive scales.  One is a 
seasonal scale, with about a 150-day 
period.  The second scale varies between 
1-10 days, and may be related to 
synoptic or mesoscale precipitation 
systems.   
 
For seasonal-scale forecast errors, North 
America and South America tend to 
peak in opposite seasons.  Errors over 
the North Pacific tend to reach a 
maximum about one month earlier than 
those over the North American 
Continent.  The South Pacific Ocean has 



a vague seasonal signal.  There is a 
strong presence of synoptic-scale and 
mesoscale forecast errors over North 
America in the spring, late fall, and 
winter that can be physically related to 
typical precipitation weather systems in 
North America. 
 
The forecast error scale separation is 
further confirmed in the multimoment 
correlation function analysis.  The Hurst 
parameter is calculated, which reveals 
that the GFS precipitation forecast errors 
possess a short memory of about 4 days 
and a long memory of about 150 days. 
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Fig. 1: Geographic classification for error comparison. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Fig. 2:  Spatially averaged time series of GFS precipitation forecast errors over a) North 
America, b) South America, c) North Pacific, and d) South Pacific (see Fig. 1 for 
geographic definitions). 
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Fig. 3: Wavelet time-frequency analysis of GFS precipitation forecast errors over a) 
North America, b) South America, c) North Pacific, and d) South Pacific. 
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Fig. 4: Log-log plots of multimoments of the correlation function for GFS precipitation 
forecast errors over a) North America, b) South America, c) North Pacific, and d) South 
Pacific.  The dash and solid lines are least-square fitting of S

1
(! ) , which give the range of 

the autocorrelation (the memory). 
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