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1. INTRODUCTION 

In our previous research, we developed a 

3DVAR system within the ARPS framework and 

applied it to the assimilation of WSR-88D radar 

and other data (e.g., Gao et al. 2002a, 2004, 

2006b; Hu et al. 2006a, b, Hu and Xue 2006). 

The radar data analysis component in this 

3DVAR system has so far been focusing on 

radial velocity data due to our emphasis on 

analysis of wind fields. Reflectivity data are used, 

in combination with surface and satellite cloud 

observations, in a physics-based complex cloud 

analysis scheme as a follow-on step to 3DVAR 

(Brewster et al. 2005; Hu et al. 2006a).  

Through experiments for the prediction of 

the Fort Worth, Texas, tornadic thunderstorms, 

Hu et al (2006) found that “this 3DVAR system is 

capable of successfully analyzing observations 

from different sources, including those from 
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radiosonde, wind profilers, surface stations, and 

Doppler radars”. When cloud analysis procedure 

is also included in the assimilation, the individual 

storm cells can be predicted for up to 2h. In the 

study of 8 May 2003 Oklahoma City Tornadic 

Thunderstorm case, Hu and Xue (2007) also got 

some interesting results by assimilating the data 

from a single Doppler radar with some properly 

chosen parameters within complex cloud 

analysis. All these results illustrate the obviously 

positive impact of assimilating radar data into 

storm-scale NWP model through this 3DVAR 

system. And applying a mass divergence 

constraint in the cost function (Gao et al 1999) 

can further increases the positive impact of 

radial velocity data on the storm forecast (Hu et 

al, 2006).  

But at the same time, some issues come 

up with the 3DVAR system. For some cases, if 

the radial velocities are assimilated alone 

without cloud analysis procedure, the model fails 

to produce the storms in the analysis and 

ensuing forecast. This is because the other 



 2

model variables except the three components of 

wind fields are not properly retrieved. One way 

to retrieve other model variables is through 

complex cloud analysis. In it, the temperature 

and model hydrometer variables can be 

estimated from radar reflectivity and satellite 

data. For example, in-cloud temperature 

adjustment, or latent heat release nudging are 

used to obtain temperature variables in the cloud 

analysis. But the resultant temperature field may 

not be consistent with other model dynamic 

fields because other dynamic variables are not 

adjusted accordingly. The alternative is to couple 

the thermodynamic information with the dynamic 

field through momentum equations which is first 

proposed by Gal-Chen(1978). Weygandt (2002) 

used this method to retrieve the perturbation 

pressure and potential temperature fields and 

justified that the results agree qualitatively with 

expectations for a deep-convective storm. But to 

accurately estimate the time tendencies in three 

momentum equations is sometimes very difficult. 

So other information is needed. 

In this paper, we report the latest 

development of 3DVAR system in light of the 

above issues. We then apply the new system to 

a tornadic supercell storm.  

2. THE UPDATED ARPS 3DVAR SYSTEM  

In the 3DVAR system, the cost function, J, is 

written as the sum of the background and 

observational terms plus a penalty or equation 

constraint term (Jc):  
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Following the standard notion of Ide et al (1997), 

x and xb are the analysis and background state 

vectors, and yo is the observation vector. B and 

R are the background and observation error 

covariance matrices, respectively. H(x) is the 

observation operator. To improve the 

conditioning of the cost function minimization 

problem and avoid the need for the inverse of B, 

a new control variable v is introduced, which is 

related to the analysis increment according to 

1/ 2b− =x x B v        (2) 

In terms of v, the background term becomes  

(1/ 2) T
bJ = v v        (3) 

Consequently, the minimization is performed in 

the space of v. The recursive filter proposed by 

Purser et al. (2003a, b) is used to model the 

effect of the background error covariance, or 

more precisely the square root of B. Currently in 

our 3DVAR system, the background field is 
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provided by a previous ARPS model forecast, or 

other large scale models’ forecasts. The 

observations include Doppler radar radial 

velocity and reflectivity, single-level surface data 

(such as Mesonet), multiple-level observations 

(such as rawinsondes and wind profilers). 

Term Jc  in (1) includes any penalty or 

dynamic equation constraint terms that serve the 

important role of correlating the desired analysis 

variables. For initializing convective storms, we 

need to initialize all state variables from only the 

radial velocity and reflectivity observations; 

dynamic constraints that relate these two 

measurements to all state variables are critical 

for achieving the necessary balance between 

different model variables, unless flow-dependent 

background error covariances are derived from, 

for example, an ensemble.  

One of the simplest, yet most important 

dynamic constraint is 3D mass divergence, as 

atmospheric flows, even at the convective scale, 

generally satisfy the anelastic mass continuity 

equation. The continuity constraint by itself is, 

however, insufficient, to uniquely determine the 

three wind components. In the light of this fact 

and the further need to couple the velocity fields 

and thermodynamic fields, additional constraints 

are supplied and discussed below. 

We assume that the radial velocity and its 

time tendency are known, the latter is derived 

from successive radar scans. In our proposed 

3DVAR framework, the three wind components 

u, v, w, potential temperatureθ , pressure p, 

water vapor specific humidity qv, are the analysis 

variables. The dynamic constraint term, Jc, is 

given by  
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The first term on the right hand side (R.H.S) of (4) 

is the pressure diagnostic equation constraint in 

which, 
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Where, vector E  is the forcing term of the vector 

Euclidian momentum equations. The primed 

variables are perturbations from a base state, cs 

is the acoustic wave speed, and ε is the ratio of 

the gas constants for dry air and water vapor. 

Other symbols follow convention. Setting P = 0 

gives the elliptic diagnostic equation for 

perturbation pressure p' found in anelastic 

models. Minimizing the quadratic form of P 

provides an important coupling between different 

model variables, especially velocity and 

thermodynamic variables. The second term on 

R.H.S of (4) 
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is the difference between the analyzed and 

observed time tendencies of radial velocity Vr (or, 

more accurately, radial momentum). The 

observed radial velocity time tendency can be 

estimated from two consecutive radar scans. 

This constraint allows the direct use of time 

tendency information contained in the radial 

velocity observations which is important for 

convective scale flows. The third term on R.H.S 

of (4) is intended to minimize the 3D anelastic 

mass divergence so as to provide the key 

coupling among three velocity Components.  

The scheme outlined above emphasizes 

the use of dynamic constraints that are 

associated with small-scale nonhydrostatic flows, 

in particular when analyzing Doppler radar radial 

velocity data. In contrast to procedures that first 

perform (velocity and thermodynamic) retrievals, 

then get the final analysis in a stepwise manner 

(e.g., Weygandt et al 2002a, b), our proposed 

scheme utilizes data and dynamic equation 

constraints within a single minimization 

framework that includes direct analysis of all 

available data. Doing so allows for the 

incorporation of appropriate relationships among 

variables and the entire analysis can be 

performed on the native model grid. An idea 

similar to ours has recently been employed by 

Liang et al. (2007a, b), where shallow water 

equations or equations based on the MM5 model 

are used as weak constraints in a 3DVAR 

framework. The method was tested with tropical 

cyclone cases and the results show a significant 

decrease in track forecast errors. However, their 

system only minimizes the time tendencies of 

model equations, which is not suitable for 

convective scale problem. The three Cs in Eq. (4) 

are error covariances associated with the 

corresponding constraints, which are assumed 

to be diagonal matrices with empirically-defined 

constant diagonal elements. They determine the 

relative importance of each constraint and their 

optimal values can be determined through many 

numerical experiments in a trial-and-error 

fashion (Sun and Crook 2001).  

The implementation of these constraints in 

3DVAR will require the development of 

associated adjoints, expressed in the native 

terrain-following coordinates of ARPS, and most 

of this work has been completed, and currently 

we have finished the code development for 

constraint (3), and (4). The work is underway for 

updating the adjoints of these constraints for the 

new version of ARPS model.  

To directly assimilate reflectivity into 

ARPS model, we have developed the adjoint 

operator for reflectivity. It adjusts the qr (rain 

water mixing ratio), qs (snow water mixing ratio), 

qh (hail mixing ratio) fields directly by minimizing 

the difference between the observed reflectivity 
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and the calculated reflectivity from ARPS model 

using the forward operator of reflectivity based 

on Smith et al. (1975). 

So far the ARPS3DVAR system uses the 

low-order recursive filter to model the effect of 

background error covariance (Purser 1982, 

Lorenc 1992, Huang 2000, Gao et al 2004). This 

filter is isotropic and not flow-dependent. For 

better assimilation and forecast, it is desirable to 

use an anisotropic spatial filter to model the 

background error covariance (Purser et al 2003). 

Liu and Xue (2006) have demonstrated the 

positive impact of flow-dependent background 

error covariances when assimilating the GPS 

slant-path water vapor observations using a 

simple but similar 3DVAR system. In their study, 

the anisotropic filter is just applied to one 

variable (water vapor specific humidity qv). It is 

desirable to extend the application of the 

anisotropic filter to all model variables (wind 

fields, thermodynamic fields and hydrometeor 

fields).  For this purpose, a new version of 

anisotropic filter from Liu and Xue (2006) is 

implemented into the ARPS3DVAR system and 

applied to all model variables. Verification 

experiments have been conducted and the 

updating is justified to be reliable. But further 

experiments are still on the way. 

3. A CASE STUDY  

To test the performance of the variational 

method, we apply it to a case of the 3 May 1999 

tornado outbreak in central Oklahoma. On that 

day, several supercell thunderstorms occurred in 

Oklahoma, and violent tornadoes were produced 

which caused considerable damages.  

In this experiment, the ARPS model grid 

comprises 151 x 101 x 43 grid points. Horizontal 

resolution is 2km. The average grid spacing in 

the vertical direction is 400m and the minimum 

grid spacing is 20m. The boundary conditions is 

specified from a 12km ARPS model run 

initialized at 1600 UTC 3 May 1999. Only 

Level-II WSR-88D data from KTLX radar are 

used here to test impact of radar data. Figure 1a 

shows the composite reflectivity from 

observation by the KTLX radar (near Oklahoma 

City) at 2230 UTC.  

In the experiment, both radial velocity and 

reflectivity data are assimilated to ARPS model, 

with mass continuity and eq. (5) as weak 

constraints. Here the direct assimilation of 

reflectivity data into model provides a simple and 

effective way to modify the three hydrometer 

variables of qr(rain mixing ratio),qs(snow mixing 

ratio) and qh(hail mixing ratio), It shows that the 

storm's location and pattern are well resolved 

(Fig 1c) when the reflectivity is used, much 



 6

better than only assimilating radial velocity(Fig. 

1b). It is noted that the intensity of the storm cell 

is not well resolved. This may indicate that the 

model variables are not well balanced. Further 

tunings of the system are needed. We will report 

the further testing of this case, the analysis and 

numerical forecasting will be reported in the 

conference.  

4. CONCLUSION 

Several new features including equation 

constraints, direct reflectivity assimilation, 

anisotropic filter have been incorporated to a 

3DVAR system for a storm scale nonhydrostatic 

NWP model, the Advanced Regional Prediction 

System model (ARPS). The preliminary 

experiments have shown positive impact from 

the new features on the improvement of the 

storm-scale assimilation and forecast. These 

initial results will further be investigated after 

adding equation constraint (6) and with single 

and/or multi radar configurations. New 

development is underway for additional new 

observation operators, such as, differential 

reflectivity and specific differential phase from 

polarimetric radars. The completed system will 

then be applied to dual-polarization real radar 

cases, observed by KOUN, and 4-node CASA 

radars in the future.  
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Fig 1a Composite reflectivity from observation at 22:30UTC 3 May 1999 
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Fig 1b Composite Reflectivity after 1 hour assimilation without use of reflectivity data 
 

 

Fig 1c Composite Reflectivity after 1 hour assimilation with use of reflectivity data 
 


