
7B.2 A SIMPLE METHOD FOR CALIBRATING ENSEMBLE VARIABILITY TO REPRESENT  
 METEOROLOGICAL MODEL UNCERTAINTY  
 

Walter C. Kolczynski, Jr.*  
David R. Stauffer 
Sue Ellen Haupt 

Pennsylvania State University, State College, PA 
 
1.  INTRODUCTION 
 

The uncertainty of meteorological 
predictions can have a large impact on public 
safety and monetary interests.  Accurate 
estimates of meteorological forecast uncertainty 
are important for many wide-ranging 
applications including: 1) computing hazardous 
areas using an atmospheric transport and 
dispersion (AT&D) model following the release 
of a dangerous airborne substance, 2) 
performing risk assessment for potential 
catastrophic weather events, 3) defining 
confidence intervals for daily temperature 
forecasts for energy traders.  It is vital that 
models are able to supply / utilize this 
uncertainty information along with their best 
predictions (e.g., Tennekes et al. 1987, NRC 
Panel 2003).  This paper concentrates on the 
meteorological uncertainty estimates needed for 
hazard prediction and consequence assessment 
(e.g., Stauffer et al. 2007), but the techniques 
are relevant for many applications of 
meteorological forecasts. 

In meteorology, we recognize that our 
models have finite limits on predictability, due to 
the nonlinearity of the earth-atmosphere system, 
our assumptions for model physics and 
numerics, and the sensitivity to the “under-
determinacy” of the initial conditions due to an 
incompletely observed atmosphere.  To replicate 
this uncertainty, we often create an ensemble 
meteorological model by slightly changing the 
initial conditions and/or the model physics with 
each run.  The goal of the ensemble is to span 
the space of all possible outcomes given the 
uncertainties in the model and its inputs.  In this 
way, we also try to account for the likelihood of 
each outcome.  An example of such an 
ensemble on the regional scale is the 
NCEP/NOAA Short-Range Ensemble Forecast 
(SREF), which is used in this investigation 
(McQueen et al. 2005).  
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Although we would like to have a model 
ensemble large enough to represent completely 
the probability density function (PDF) of possible 
forecasts, this is not practical with current 
computing resources.  Therefore, meteorological 
model ensembles are only a sampling of the full 
PDF, and any ensemble statistics we generate 
(such as variance) should be calibrated to more 
accurately represent the full PDF rather than just 
the limited set of ensemble members. 

Most AT&D models are designed to use 
outputs from meteorological models to drive 
their sophisticated dispersion calculations.  
Ideally, we would like separate AT&D model 
runs based on the output from each 
meteorological ensemble member to create an 
ensemble of dispersion models on which to base 
our hazard predictions.  Unfortunately, in a 
crisis, where decisions need to be made quickly 
in order to coordinate emergency personnel 
response, this is not always possible and only a 
single run of an AT&D model may be performed.  
We would, however, still like to use any 
uncertainty information we can deduce from the 
meteorological ensemble to help determine our 
confidence in the output from the AT&D model.  
Therefore, we need a simple but robust way to 
translate uncertainty information from the 
meteorological ensemble into a single AT&D 
run.  This paper explores the applicability of a 
simple linear calibration to calculate an actual 
uncertainty based on uncertainty information 
derived from the meteorological model 
ensemble.  Because the Defense Threat 
Reduction Agency (DTRA) uses the Second-
Order Closure Integrated Puff Model (SCIPUFF, 
e.g., Deng et al. 2004) in their Hazard Prediction 
and Assessment Capability tool kit (HPAC)  as 
its primary AT&D model for responding to real 
and potential threats, we focus on methods that 
are applicable to this HPAC/SCIPUFF system. 

The rest of this paper is divided into five 
sections.  Section 2 describes the details of the 
model ensemble used in this study and the 
basics of our linear calibration technique, 
including our binning method.  Section 3 
presents and discusses the results when our 
technique is applied to single-point variances.  



The results when the technique is used on two-
point covariance information are reviewed in 
Section 4.  Section 5 introduces the use of 
covariance information to derive SLE, a length 
scale parameter used by SCIPUFF that is 
related to the Lagrangian time scale.  Section 6 
draws some conclusions and outlines future 
work. 
 
2. METHODOLOGY 

 
For this study, we use output from the SREF 

for a 22-day period from 25 August to 15 
September 2004.  At that time, ensemble 
forecasts were issued twice daily at 09 UTC and 
21 UTC with a maximum forecast length of 63 
hours.  Only the ETA model members of the 
SREF ensemble are used here to retain model 
consistency.  This choice gives us 44 63–hour 
forecast sequences of a ten-member ensemble.  
For verification, we use the 0-hour forecast 
(analysis) from a control member of the 
ensemble (ETA-ctl1).  This yields five different 
forecast/verification pairs (every 12 hours from 
12-60 hours) for each ensemble set. 

Because the primary goal of this study is to 
produce a practical calibration technique to be 
used for meteorological data input into 
SCIPUFF, we examine boundary-layer winds in 
this analysis.  We do not use winds calculated 
on constant pressure surfaces in order to avoid 
using fictitious data from underground points 
when pressure levels intersect terrain.  Instead, 
we use the U- and V-components of wind from 
the first 30hPa above ground level (AGL).  
These data are reported in the SREF-ETA data 
files as 15hPa AGL winds, and are abbreviated 
as 15hPa AGL U in this paper.  These winds 
represent the average values for a layer of 
~300m in depth. 

Variances and covariances are used to 
represent the uncertainty of a meteorological 
forecast.  We use the standard definition of 
these quantities, so that the ensemble variance 
EVar of a scalar quantity s is given by: 
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where N is the number of ensemble members, ij 
denotes the value at a single point (i,j), subscript 
m denotes a single ensemble member, and an 
overbar denotes an average over all ensemble 
members.  Thus EVar(s(ij)) is the ensemble 
variance of scalar s at point (i,j), and sm(ij) is the 
value of scalar s at point (i,j) in ensemble 

member m.  The actual error variance AVar is 
defined as: 
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where sv denotes the analysis or verification 
value of scalar s at the verification time (i.e., the 
true value).  Similarly, the ensemble covariance 
and actual error covariance are: 
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with kl representing a second point (k,l) and all 
other parameters are defined as before, with 
sm(kl) representing the value of scalar s at point 
(k,l) for ensemble member m. 

We also define ensemble correlation ECor 
as: 
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Because the resulting matrices are quite 
large, especially for covariances, we use 
bootstrap sampling (Wilks 2006) to obtain a 
representative sample rather than computing the 
value for all points and point combinations.  We 
then apply the binning technique described in 
Roulston (2005) to extract meaningful 
information from the resulting sample.  This 
binning technique ranks the samples based on 
the values of the predictor.  These values are 
then sorted into bins of a specified number of 
points and averaged.  For this study, all of our 
bins represent 1000 points, so that the 1000 
points with the lowest value of the predictor 
would go into the first bin, and the next 1000 
points into the second bin, etc. 

 
3. VARIANCE CALIBRATION 

 
SCIPUFF ingests uncertainty information in 

the wind field via the UUE, VVE, and UVE 
parameters, which represent the single-point 
variance in U, variance in V, and covariance of 
U and V, respectively, in three space 
dimensions, and new arrays are read every 
meteorological model output time.  Ideally, we 



would like to use the actual variance of these 
fields as inputs for SCIPUFF.  The ensemble 
variance for each of these variables is calculated 
readily from the model ensemble outputs.    
Because, as we discuss above, this estimate is 
not necessarily the same as the actual variance, 
we would like a way to calibrate our ensemble 
variances to represent more accurately the 
actual variances.  Toward this end, we apply the 
bootstrap sampling and binning technique 
described in Section 2, with ensemble variance 
as the predictor quantity and actual error 
variance as the predicted quantity. 

Figure 1 shows the result when this is 
applied to the 15hPa AGL U component of the 
wind field of the 12-hour forecast, and Figures 2-
5 shows the binned scatterplot for progressively 
longer forecasts, every 12 hours from 24 hours 
to 60 hours.  All of the plots show a strong 
functional relationship between ensemble 
variance and actual error variance.  This means 
that, not only is ensemble uncertainty a good 
predictor of the actual uncertainty, but also that 
we can often apply a simple, computationally 
inexpensive, linear calibration based on the 
least-squares fit line to the ensemble variances 
to derive expected actual variances.  While 
some of the plots seem to suggest that a 
quadratic fit line would provide a better 
representation, the calibration using a quadratic 
fit line is still relatively inexpensive, and for 
simplicity, we will continue to discuss only the 
linear fit here, acknowledging there may be 
other functions that are useful.  

Another important thing to note from the 
figures is that the slope of the line, which 
changes depending on the duration of the 
forecast, becomes steeper as the forecast 
period gets longer.  This line represents the 
variance of the model compared to that of the 
actual atmosphere, with a 1:1 line representing 
an ideal ensemble, steeper lines an under-
dispersive ensemble and shallower lines an 
over-dispersive ensemble.  The steepening is 
indicative of the ensemble becoming less over-
dispersive with increased integration time. This 
steepening is consistent with other studies of 
ensemble spread, which show that ensembles 
are start over-dispersive at short forecast times 
and gradually become under-dispersive at 
longer forecast times (e.g. Du et al 2003, 
Whitaker and Loughe 1998).  This result is 
important to our calibration, because it means 
we must apply a different calibration to the 
ensemble at each forecast time for which we 
wish to produce actual variances. 

 

Figure 1 - Relationship of ensemble variance 
(abscissa) to the actual error variance (ordinate) 
for 12-hour SREF forecasts of 15hPa AGL U 
made during the study period 25 August – 15 
September 2004.  Horizontal lines represent the 
width of the 1000-point bin. 

 

 

 

 

 

Figure 2 – As in Figure 1, except for 24-hour 
forecasts. 



 

Figure 3 - As in Figure 1, except for 36-hour 
forecasts. 

 
Figure 4 – As in Figure 1, except for 48-hour 
forecasts. 
 
4. COVARIANCE CALIBRATION 

 
Because spatially correlated errors in the 

wind field cause much larger errors when 
integrated over the path of a particle than do 
uncorrelated errors, it would also be useful to 
have information about the covariance of errors 
in the wind field at two separate points.  We 
easily  can  apply  the  same  technique  that  we 

 

Figure 5 - As in Figure 1, except for 60-hour 
forecasts. 

 

 
used on variances in Section 3 to two-point 
covariances to derive a calibration of ensemble 
covariances to actual error covariances. 

Figure 6 demonstrates the relationship 
between ensemble covariance and actual error 
covariance for 48-hour forecasts.  Because two 
points separated in space can have a negative 
correlation, the covariances in this plot are both 
positive and negative, as opposed to the 
variance plots, which are positive definite.  The 
linear relationship does not look as good as that 
of the variance relations, but this is not 
surprising, as there is no reason to expect errors 
in the ensemble mean field to be spatially 
correlated, as they may be in individual model 
runs.  Additionally, note the smaller scale for the 
actual error covariance compared to the 
ensemble covariance. 

Recognizing the problem with using the 
ensemble mean field for covariance, we also 
explored using a control member of the 
ensemble, as the basis for computing our 
covariances by replacing the overbar terms in 
(3) and (4) with the value of ensemble member 
ETA-ctl1 at that point and removing that control 
member from the sum.  These results for the 
same variable and forecast time as Figure 6 are 
shown in Figure 7.  The linear relationship 
appears much stronger for this formulation of 
covariance. 



 
Figure 6 - The relationship of ensemble 
covariance (abscissa) to actual error covariance 
(ordinate) for 48-hour SREF forecasts of 15hPa 
AGL U made during the study period.  Note the 
much smaller scale along the ordinate axis 
compared to the abscissa axis. 
 
 
 

 

Figure 7 – Same as in Figure 6, except using a 
control member (ETA-ctl1) rather than the 
ensemble average for the overbar terms in 
calculating the covariances (using (3) and (4)). 

5. DISTANCE CORRELATION 
 
Although the work presented in the previous 

section provides a useful calibration for the 
ensemble covariance, SCIPUFF does not input 
Eulerian covariance information directly.  
Instead, information about the spatial error 
correlation is provided via the parameter SLE, 
which is a length scale related to the Lagrangian 
time scale (Peltier et al. 2007).   
However, this Lagrangian length scale is likely 
related to the length scale of the Eulerian 
covariance in some way.  Using this reasoning, 
we compare the correlation of ensemble spread 
between two points, which is just a normalized 
form of the covariance, as a function of the 
distance separating the two points.  This 
relationship between distance and correlation of 
ensemble spread is shown in Figure 8, which 
demonstrates that there is a significant 
correlation between that at two points close 
together but almost no correlation for points at 
much greater separation distances.  This result 
is consistent with the common practice of 
weighting observations in a data assimilation 
scheme based on background model error 
covariances such that they have less influence 
with increasing distance from the observation 
site (Daley 1991).  This error correlation 
distance scale generally increases for 
observations located above the surface and 
boundary layer where the atmosphere contains 
much larger scale energy (e.g., Stauffer and 
Seaman 1994).    

The exact length at which ensemble spread 
or errors are uncorrelated depends on many 
parameters including the variable type, forecast 
length, vertical level and the choice of threshold.  
Clearly, beyond about 1500km the correlations 
for low-level wind in this case are all within the 
noise level of the plot and are thus uncorrelated.  
Choosing 0.2 as the correlation cutoff yields an 
uncalibrated   “length   scale” of   ~600km.  This 
distance correlation for other variables and 
levels (Figures 9 and 10) shows significantly 
different correlation lengths as expected: 
500hPa geopotential height, which is dominated 
by large-scale processes, appears to have a 
much longer correlation length, and 2m temper-
ature, which has significant local effects, 
indicates a much shorter correlation length.  
Again using the 0.2 cut-off, the uncalibrated 
“length scale” is ~2000km for 500hPa 
geopotential height and <500km for 2m 
temperatures.  These results are encouraging 
since they suggest that these distance  



Figure 8 – The relationship of ensemble 
covariance of 15hPa AGL U to the distance 
between the two points for 48-hour SREF 
forecasts. 

 

 

Figure 9 – As Figure 8, but for 500hPa 
geopotential heights. 

 
correlations of ensemble spread may be useful 
for determining SLE. 

 
6. CONCLUSIONS 

 
In this study, we examine the utility of using 

the Roulston (2005) binning method to extract 
useful information and relate measures of  model  

 

Figure 10 - As Figure 8, but for 2m Temperature. 

 
ensemble uncertainty to actual uncertainty. This 
technique reveals a strong relationship between 
the ensemble variance and actual error variance 
in the 15hPa AGL wind field that can be fit well 
by a simple function (linear or perhaps 
quadratic).  This function provides a computa-
tionally inexpensive way to calibrate ensemble 
variances in model output for use in the 
HPAC/SCIPUFF dispersion software used by 
DTRA or other applications discussed in Section 
1.  Use of this additional meteorological 
uncertainty information should produce better 
probabilistic forecasts of hazardous 
concentrations in the event of a toxic chemical 
release. 

We also examine using the same technique 
to calibrate ensemble covariance.  We hypoth-
esize that because of the dynamically 
unbalanced nature of the ensemble mean field, 
results calculating the covariance based on the 
mean can fail to show a strong relationship 
between ensemble covariance and actual error 
covariance.  However, when covariance was 
calculated using a single member (thus retaining 
continuity and dynamic consistency), the binning 
method in this application revealed a strong 
relationship between ensemble covariance and 
actual error covariance.  Although there is 
currently no direct method for ingesting this sort 
of data into the DTRA HPAC/SCIPUFF system, 
it suggests that the ensemble covariance 
represents something physical, and thus useful 
in calculating correlation distances using the 
ensemble. 



This relationship between distance and 
ensemble correlation is further explored using 
the binning technique.  The plots reveal a strong 
relationship between distance and ensemble 
spread, producing an expected pattern of higher 
correlations at closer distances.  The two other 
variable fields examined here, the 500hPa 
geopotential height and 2m temperature, have 
ensemble-spread distance-correlation relations 
that vary as expected from the low-level wind 
field: the spread in 500hPa height remained 
correlated over a much longer distance and the 
2m temperature over a much shorter distance. 

This area of research is still in its infancy 
and there are several areas where continued 
investigation is needed.  Of primary interest is 
the sensitivity and added value of 
HPAC/SCIPUFF predictions to this uncertainty 
information, and whether these relationships are 
maintained for other variables and vertical 
levels, different size and resolution domains, 
varying proportions of land versus water in the 
domains, different seasons and locales, and 
especially when applied to model ensembles 
specifically designed to address the variability of 
the boundary layer, rather than those focused on 
mesoscale to synoptic-scale features and 
predicting precipitation. 
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