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1 INTRODUCTION 

As models are refined and developed, it is 
imperative to have objective ways to evaluate forecast 
quality.  This is important for comparing different model 
configurations or tracking performance over time.  
Greater computing power has allowed finer grid spacing 
and more explicit handling of previously unresolved 
circulations (which is crucial for distinguishing high 
impact events with intense peaks in wind or 
precipitation).  The problem is, as grid spacing 
decreases, the traditional verification methods become 
swamped by small-scale errors and they often cannot 
discriminate between a somewhat-useful forecast and a 
totally useless forecast.  For example, a high-resolution 
forecasted precipitation field may look very good and be 
quite useful, but if it is slightly offset from the 
observations, the traditional verification scores (such as 
critical success index and equitable threat score) will be 
dominated by false-alarms and misses due to slight 
displacement errors.  Forecasted and observed events 
are unlikely to be matched up exactly on a point-by-
point basis and the forecast is “doubly-penalized” for 
false alarms and misses associated with what is 
essentially the same entity.  We would like our 
verification metric to be sensitive to displacement errors, 
but at the same time not give an inordinate amount of 
weight to trivial deviations from the observations (truth).  
It is with this in mind that we look at several innovative 
approaches to spatial forecast verification.  These 
methods, which were discussed at a verification 
workshop in Feb. 2007, can be divided into three broad 
categories: feature-based, neighborhood approach, and 
scale decomposition. 

2 FEATURE-BASED 

Numerous methods have been proposed to look 
specifically at how well coherent features are 
forecasted. These methods are also referred to as 
features-based, object-oriented, and cell-identification 
techniques. The primary difference among these 
approaches is how they determine: (a) what constitutes 
an feature, (b) whether two spatially discontinuous 
features within a field should be treated as one feature 
or two separate features, and (c) how they match 
features from one field (e.g., the forecast field) to the 
other (e.g., the observation field), and (d) what sorts of 
diagnostics and/or summary measures they produce.  
Most of the methods determine (a) by applying a 
threshold to the raw field.  

The contiguous rain area (CRA) approach of Ebert 
and McBride (2000) determines (b) based on enlarging 
the feature area and checking whether the features 
overlap, and (c) is attained by translating the forecast 
until a pattern matching criterion (e.g., maximum 

overlap) is met.  Displacement, volume and pattern error 
are found as a consequence of this procedure.  Various 
modifications to this procedure have been proposed 
(e.g., Grams et al., 2006). 

The method developed by Davis et al. (2006), now 
called the Method for Object-based Diagnostic 
Evaluation (MODE), addresses (a) not solely by 
applying a threshold, but also by smoothing.  Once 
features are identified, they are merged and matched by 
using a dual-threshold method and/or fuzzy logic.  An 
initial threshold defines simple objects which can, in 
turn, be grouped according to whether they are 
enclosed by the same lower-threshold contour.  The 
fuzzy logic utilizes information about centroid distance 
between two features, boundary distance, orientation, 
area ratio, and intersection area ratio and assigns 
weights and confidence to each component based on 
user preferences.  The attributes that enter the fuzzy 
logic algorithm and the final interest values provide 
various diagnostic and summary measures about 
forecast quality. 

 
Fig. 1. The object-based approach defines contiguous 
entities (such as green and blue blobs above) and 
computes their distance (which may be measured in a 
number of ways).   

The shear number of ways to determine (b) and (c) 
can be bewildering and make the ultimate choice of 
fuzzy logic parameters somewhat subjective.  An 
intriguingly simple alternative that deserves further 
attention is defining the distance in terms of the 
Baddeley metric, which analytically summarizes 
differences in object placement and shape with a single 
value (Gilleland, 2007). 

Marzban and Sandgathe (2006) apply statistical 
cluster analyses in order to define features, so that (c) is 
not an issue. The results for (d) are traditional 
verification scores displayed for varying numbers of 
features, referred to as clusters, in each of the forecast 
and observed fields. 

 Nachamkin (2004) uses a composite approach 
whereby (d) is addressed by looking at the conditional 
distributions of the forecast events given an observed 
event occurred and of the observed events given a 
forecast event occurred. 

Micheas et al. (2006) address (b) by using a user-
defined minimum object size criterion to tag all individual 



objects above the intensity threshold selected. The 
method determines (c) by matching based on proximity 
and intensity structure of the observed and forecasted 
objects.  Consequently, some observed cells may be 
matched to multiple forecast objects yielding a higher 
penalty for over- or under-forecasting of cells.  
Procrustes shape analysis and a user-defined penalty 
function are subsequently employed to glean 
information about forecast performance in terms of 
rotation, dilation, translation, as well as intensity-based 
errors over the entire forecast domain. 

Finally, Wernli et al. (2007) take a different 
approach to this general idea.  They define features 
within an area of interest, but no attribution between 
precipitation objects in the forecast and observations is 
necessary.  Their method, referred to as SAL for 
Structure, Amplitude and Location, considers these 
three independent components defined so that a perfect 
forecast would yield values of zero for all three. 

3 NEIGHBORHOOD APPROACHES 

Instead of just matching the forecast to the 
observation gridpoint-by-gridpoint, the neighborhood 
approach looks at the immediate neighborhood 
surrounding each point of interest.  Statistics such as 
mean, max, or median, are computed for the 
neighborhood.  The earliest and perhaps simplest of 
these methods is referred to as upscaling, whereby the 
forecasts and observations are merely averaged to 
consecutively coarser scales and compared with 
traditional scores (e.g., Yates et al., 2006; Zepeda-Arce 
et al., 2000; Weygandt et al., 2004).  Atger (2001) uses 
a multiple-event contingency table approach that allows 
for several intensity thresholds to be evaluated as well 
as other dimensions such as spatial or temporal 
proximity.  The Fractions Skill Score (FSS) of Roberts 
(2005) and Roberts and Lean (2007) compare the 
fractional coverage of events in windows surrounding 
the observations and forecasts.  Damrath (2004) utilizes 
two approaches: one that uses a functional on the 
neighborhood that employs a proportion threshold within 
the neighborhood to determine whether an event has 
occurred or not, and one that employs a fuzzy logic 
technique that defines events as the probabilities 
themselves.  Brooks et al. (1998) address the issue of 
rare event verification in this context using a practically 
perfect hindcast.  Other scores under this general 
paradigm are investigated by Germann and Zawadzki 
(2004) and Rezacova et al. (2007).  Marsigli et al. 
(2006) introduce a more general approach by 
comparing the distribution of observations in 
neighborhoods compared with the distribution of 
forecasts in neighborhoods. 

Two important points should be considered when 
applying these neighborhood schemes, and the radius 
defining neighbors is increased (or decreased) in one 
field and not the other; or neighborhoods are only being 
considered for one field. First, because the functionals 
aggregate over the neighborhood, one must be cautious 
about interpreting comparisons between them because 
the representativeness of the values for the forecast and 

observation fields may, subsequently, be quite different. 
Second, the events may be very different when a 
threshold defines them.  For example, if the event is, 
“precipitation exceeds 20 mm,” then an average over 
100 km2 versus an average over 1000 km2 results in 
comparisons of wildly different events. 

Among some of the qualitative advantages of these 
approaches are: (i) the parsimony of the techniques, (ii) 
the familiarity of traditional scores, (iii) the ability to 
determine at which scales the forecast performs best, 
(iv) avoiding the double-penalty problem, and (v) the 
possibility to apply them to non spatially homogeneous 
sets of forecasts and observations. 

 The particular verification questions addressed by 
these procedures depend largely on: the traditional 
score utilized, the functions used to summarize the 
neighborhood values, and how the neighborhoods are 
determined.  For complete information on the specific 
questions addressed and detailed summaries of each 
technique, please consult Ebert (2006); only a very brief 
summary is given here. 

4 SCALE DECOMPOSITION 

Scale-dependent error is addressed by the scale 
decomposition approaches. Here, “scale” refers to a 
single-band spatial filter (e.g., Fourier transforms, 
wavelets, etc.), whereby one investigates forecast 
performance by isolating the features at each scale (or 
wave number). These scales are, therefore, 
representative of physical features such as separate 
large-scale frontal systems to smaller scale convective 
showers. These approaches aim to: (i) assess the scale 
dependency error, (ii) determine the skill/no-skill 
transition scale (i.e., assess the scale dependency of 
the model predictability), and (iii) assess the capability 
of the forecast to reproduce the observed scale 
structure. 

The intensity-scale (IS) technique of Casati et al. 
(2004) measures skill as a function of the scales and of 
the intensity (e.g., rainfall rates). Forecast and 
observation fields are transformed into binary images by 
thresholding for different intensities. These images are 
subsequently separated into the sum of different scale 
components using a two-dimensional Haar wavelet 
decomposition, and a skill score based on the mean 
square error (MSE) of these images is evaluated for 
each scale component and intensity threshold. The 
result is a Heidke skill score evaluated at different 
scales, thereby linking categorical scores with the scale 
verification approaches. 

Mittermaier (2006) expanded the idea by presenting 
a method for aggregating results for individual 
(operational) forecasts produced from the intensity scale 
analysis, and compared the performance of the 12- and 
4-km Unified Models against radar rainfall and gridded 
gauge analyses. The wealth of detailed information 
these methods provide is useful in a diagnostic context, 
but for operational verification, there is a need for a 
method for condensing this detail into manageable and 
easy to understand quantities. 



Harris et al. (2001) look at multiscale statistical 
properties related to the spatio-temporal scale structure 
of the fields. In particular, they study the forecast 
performance by looking at the: Fourier spectrum, 
structure function, and moment-scale analyses.  The 
method differs from the above methods in that they do 
not perform the verification on different scales 
separately.  They also apply the technique to the 
forecast and observation fields separately so that they 
address the issue of assessing the capability of the 
forecast to reproduce the observed scale structure. 
Because the technique does not involve matching 
forecast phenomena to those of the observations, 
information about the marginal distributions are gleaned 
rather than their joint distributions. 

5 FUTURE WORK  

Some have noted similarities between the object-
based methods and the theory of image morphing.  
Essentially, both rely on anchors or common landmarks 
in the forecast and observed fields.  The 
correspondence between the forecast and the 
observation is proportional to the degree of warping that 
must be applied to the forecast field in order to match 
the observations.  The body of literature on image 
warping is relatively untapped when it comes to 
meteorology, and it may offer novel analytic ways to 
compare geophysical fields (Keil and Craig (2007); 
Nehrkorn et al., 2003).   

6 SUMMARY 

A suite of new verification methods has recently 
emerged to deal with high resolution gridded forecasts. 
As grid spacing has decreased, forecasts have 
improved due to less reliance on sub-gridscale 
parameterization. Even though the forecasts look more 
realistic, this improvement is not captured well by 
traditional methods of spatial verification. Traditional 
methods that rely on a gridpoint to gridpoint comparison 
between the forecast and observation field will typically 
show lower skill for smaller grid spacing. This is a 
fundamental limitation of methods such as critical 
success index, false alarm ratio, and equitable threat 
score. Model developers can also artificially increase 
their skill scores by simply adjusting the bias (Mesinger, 
2007).  These concerns have led to alternate verification 
methods based on feature identification, bias-adjusted 
CSI, neighborhood averaging and/or spatial error 
decomposition.  At a meeting in Boulder in Feb 2007, 
developers of these new methods convened to show 
how their unique methods could be applied to common 
set of gridded observations and forecasts.  We present 
results from this meeting and touch upon some inherent 
strengths and weaknesses of the new verification 
methods. 
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