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1. INTRODUCTION 
 

Operational weather analysis and numerical 
weather prediction (NWP) has evolved from use of 
only standard surface and upper-air observations 
towards assimilation of many additional data sources 
from surface mesonets, satellites and radars.  Data 
assimilation is the process used to determine a more 
accurate state of atmosphere from these diverse 
observations and model forecast / background fields.  
The nudging data assimilation scheme has become 
increasingly popular for mesoscale data assimilation 
because of its efficiency and its use of  the full set of 
model equations.  This continuous assimilation 
method allows the corrections to be made gradually 
thereby reducing insertion shock common with other 
intermittent methods while allowing them to 
influence other variables and future time periods 
through the model equations’ interactions (Stauffer 
and Seaman 1990, Stauffer and Seaman 1994).   

The ensemble Kalman filter (EnKF), on the 
other hand, takes advantage of ensemble forecasts, 
which are becoming more widely available, to get 
flow-dependent background error covariance which 
can be used to spread the corrections and more 
efficiently seek the optimum state between the model 
background and the observations (Evensen 1994).  
Although the nudging scheme is computationally 
efficient, it is often used with ad-hoc nudging 
coefficients based on theory and past experience but 
they can be better specified by adjoints and/or model 
statistics (e.g., Stauffer and Bao 1993).  The EnKF 
includes both dynamic and statistical information but 
is computationally expensive.  Thus a hybrid 
nudging-EnKF approach with potential use for NWP 
is proposed and explored here using the non-linear 
Lorenz (1963) three-variable model system, which 
allows the EnKF to provide flow-dependent / time-
varying error covariance to compute the nudging 
coefficient matrix and to further correct the model 
fields. 
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2. METHODOLOGY FOR HYBRID NUDGING-
EnKF APPROACH 
 

To describe our proposed data assimilation 
system, we write the equations of the system as: 
 

( ) (x x G w x xod f
dt )= + ⋅ ⋅ − ,           (1) 

where x  and f  are the state vector and standard 

forcing function of the system respectively, xo  is 
observation, G is the nudging magnitude matrix for 
the nudging term and w is generally the nudging 
spatial-temporal weighting coefficient used to map 
the innovation (observation minus the model 
background) in observation space and time to the 
model grid cell and time step.  The product of G and 
w is defined here as the nudging coefficient. 

The traditional nudging data assimilation 
scheme sets the nudging coefficient with non-zero 
diagonal elements and zero off-diagonal elements so 
that the nudging term is relatively small compared to 
the other physical terms .  The nudging 
coefficient is often specified by past experience and 
experimentation (e.g., Stauffer and Seaman 1994) to 
emulate the error covariance or correlation in the 
error at the observation location with that in a spatial 
and temporal region / window about the observation 
site and observation time.  To determine flow-
dependent / time-dependent nudging coefficients, the 
hybrid nudging-EnKF method uses the gain matrix of 
the EnKF to compute the nudging magnitude matrix 
(Kalata 1984; Painter et al. 1990; Yang et al. 2006).   

( )xf

The gain matrix of the EnKF is (Evensen 1994): 
 

( ) 1T TK B H H B H R
−

= + ,                (2) 

where B is the covariance matrix of background 
errors, R is covariance matrix of observation error, 
and H is the observation operator.  In the application 
presented in this paper, the nudging magnitude 
matrix G is a function of EnKF gain matrix and 
nudging weighting coefficient w.  The nudging 
magnitude matrix in the hybrid nudging-EnKF 
method is defined as: 
 

G t Kw= ,                             (3) 



where  is a function of the nudging weighting 
coefficient.  

tw

Compared to the traditional nudging approach, 
the hybrid nudging-EnKF approach takes advantage 
of ensemble forecasts which offer flow-dependent / 
time-dependent background error covariance to 
provide a flow-dependent / time-varying nudging 
coefficient.  The hybrid nudging-EnKF approach can 
also extend the nudging magnitude matrix from 
having non-zero diagonal elements and zero off-
diagonal elements to a full non-zero matrix.  This 
may lead to more accurate adjustment of background 
to observation than the traditional approach. 
 
3. MODEL DESCRIPTION AND 
EXPERIMENTAL DESIGN 
 

As a test bed for data assimilation, the non-
linear Lorenz (1963) three-variable model system 
consisting of three coupled and nonlinear ordinary 
differential equations is applied here: 

 

                              ( )dx y x
dt

σ= −  

dy rx y xz
dt

= − −                          (4) 

                              dz xy bz
dt

= −  ,     

where the parameters are set as standard values: 
σ =10, =28, =8/3, and model error is not 
considered (i.e., perfect model assumption).  The 
state vector x  and observation vector  in Eq. (1) 
are now column vectors with dimension 3

r b

xo

× 1, and 
the nudging magnitude matrix G and the EnKF gain 
matrix K are dimensioned 3× 3. 

We integrate the Lorenz model in time using a 
fourth-order Runge-Kutta numerical scheme and a 
time step  of 0.01.  Equation (4) is integrated 
from a true initial value set as (1.508870, -1.531271, 
5.46091) to obtain the true state.  For the simulated 
observations, we add the observation errors chosen 
randomly from a Gaussian distribution with mean 
zero and variance 1.0 to the true values from the true 
state at corresponding times.  Since the true initial 
value is unknown in the real atmosphere, a central 
initial value, defined as the ensemble mean at the 
initial time step, is assumed to be an approximate true 
initial value, which is the true initial value with an 
additive random error.  By adding random errors 
from a Gaussian distribution with mean zero and 
variance 1.0 to the central initial value, the initial 
values for the ensemble are derived.  The number of 
ensemble members is set to 100.  To eliminate the 
effects of transients (Yang et al. 2006), we integrate 

the Lorenz model from the central initial value and 
the ensemble for 1000 time steps first and then 
assimilate the observations by either the traditional 
nudging method, the EnKF, or variations of the 
hybrid nudging-EnKF approach.  The integration 
from the central initial value is called as central state 
in the following.  The observation density is one per 
25 time steps by default, and is varied to one per 10 
and one per 50 time steps in two experiments. 

tΔ

For the hybrid nudging-EnKF approach, the 
system (Eq. (4)) becomes: 
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where each g  is an element in the nudging 
magnitude matrix G in Eq. (1).  The traditional 
nudging approach has non-zero diagonal elements 
and zero off-diagonal elements in the nudging 
magnitude matrix. 

For both the traditional nudging method and the 
hybrid nudging-EnKF methods applied to the Lorenz 
three-variable system, the nudging weighting 
coefficient w only varies in time as defined by 
(Stauffer and Seaman 1990): 
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where  is the model time,  is the observation time, 
and 

t ot
τ  is the half-period of the nudging time window.  

Given τ  and w, the function  in Eq. (3) is:  tw
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Since the nudging weighting coefficients is fixed as 
description of Eq. (6), t  is a function of the half-

period 
w

τ  and time step tΔ  as shown in Eq. (7). 
In the traditional nudging approach (named 

TNGAx, where x is the value of the half-period of the 



nudging time window, 8, 4, 2 and 1), the diagonal 
elements of G are set to 10.0 (Yang et al. 2006).  
After the initial integration of 1000 time steps, we 
continue to integrate the central state forward in time 
by assimilating the observations using traditional 
nudging for another 3000 time steps.  This and the 
following experiments are also integrated for a 
second 3000-step period from 4000 to 7000 time 
steps.  The second experiment, which integrates the 
ensemble forward and assimilates observations by the 
EnKF, is named as EKFA.  The HNKFx (HNKDx) 
experiment uses the full nudging magnitude matrix 
(diagonal elements only) and assimilates the 
observations by the hybrid nudging-EnKF approach 
in the central state while the nudging magnitude 
matrix G is determined by creating an ensemble by 
adding random errors to the central value at one 
observation time step and integrating the ensemble 
from this observation time to the next observation 
time.  Then we calculate the results of the average 
root mean square (RMS) errors of the central state 
(TNGAx, HNKFx and HNKDx) and the ensemble 
mean (EKFA) compared to the truth for all three 
variables together every time step  during the 3000 
time steps.  The FCST or control experiment is the 
result of integrating the model forward for 3000 time 
steps without assimilating any observations.  

For experiments HNKFx and HNKDx, we test 
the hypothesis that a temporally averaged nudging 
coefficient may be computed for the first 3000-step 

period and then frozen for use in these experiments 
(FHNKFx and FHNKDx) during the first 3000-step 
period and again for a future 3000-step period.   
  
4. PRELIMINARY RESULTS 
  

During the first 3000-step period, the results of 
FCST, EKFA, TNGAx, HNKFx and HNKDx are 
shown in Table 1.  All data assimilation schemes 
produce much smaller RMS analysis errors than the 
control FCST without data assimilation, 17.9.  The 
EKFA shows the smallest RMS analysis error (1.2).  
Both hybrid nudging-EnKF approaches (one with the 
full nudging magnitude matrix and the other with 
diagonal elements only) generally have smaller RMS 
errors than the traditional nudging, since these two 
hybrid approaches use the ensemble spread to 
estimate the background error information and use 
this in the nudging coefficients.  The hybrid methods 
can produce RMS errors that are only slightly larger 
than the EnKF.   Also, the RMS errors using the full 
nudging magnitude matrix are smaller than those 
using diagonal elements only. 

The hybrid nudging-EnKF with only diagonal 
elements of the nudging magnitude matrix (see Eq. 
(5)) still improves the statistical scores compared to 
the traditional nudging method by using the EnKF to 
provide time varying nudging coefficients that may 
be larger or smaller than the traditional nudging 
coefficient of 10.  Furthermore, the hybrid nudging-

 
 RMS  RMS  RMS  RMS 

FCST 17.9 TNGA8 2.1 HNKF8/HNKD8 1.8/2.2 FHNKF8/FHNKD8 2.1/2.8 

EKFA 1.2 TNGA4 2.5 HNKF4/HNKD4 1.3/1.9 FHNKF4/FHNKD4 1.8/2.6 

  TNGA2 7.2 HNKF2/HNKD2 1.3/2.1 FHNKF2/FHNKD2 1.9/2.9 

  TNGA1 15.7 HNKF1/HNKD1 1.5/1.8 FHNKF1/FHNKD1 1.6/2.3 

 
Table 1. The average RMS error in the first 3000-step period of the no data assimilation control experiment FCST, EnKF data assimilation 
experiment EKFA, traditional nudging data assimilation experiments TNGAx, hybrid nudging-EnKF data assimilation experiments HNKFx and 
HNKDx, and frozen hybrid nudging-EnKF data assimilation experiments FHNKFx and FHNKDx, respectively. 
 
 

 RMS  RMS  RMS 

FCST 18.0 TNGA8 2.7 FHNKF8/FHNKD8 2.4/3.3 

EKFA 1.4 TNGA4 3.5 FHNKF4/FHNKD4 2. 6/3.7 

  TNGA2 10.9 FHNKF2/FHNKD2 2.8/4.0 

  TNGA1 10.8 FHNKF1/FHNKD1 2.2/3.4 

 
Table 2.  The average RMS error in the second 3000-step period of the no data assimilation control experiment FCST, EnKF data assimilation 
experiment EKFA, traditional nudging data assimilation experiments TNGAx, and frozen hybrid nudging-EnKF data assimilation experiments 
FHNKFx and FHNKDx, respectively. 
 



EnKF with the full nudging magnitude matrix (Eq. 
(5)) extends the nudging magnitude matrix from only 
non-zero diagonal elements and zero off-diagonal 
elements matrix to a full non-zero matrix.  Figure 1 
shows the average value of the nudging coefficients 
in the first 3000-step period of HNKF4.  The 
diagonal nudging coefficients are larger than the off-
diagonal ones in the y and z equations, and the off-
diagonal nudging coefficients relating to variable z 
are much smaller than those off-diagonal elements of 
x and y.  These findings are consistent with the 
results of Yang et al. (2006).  The use of the EnKF 
gain matrix to provide information to the nudging 
coefficients has been proven.  The diagonal nudging 
coefficients are always positive since they are 
computed from the variance of the background and 
they determine the e-folding time for reducing the 
errors of the system.  However, the off-diagonal 
nudging coefficients may be negative, like the ones 
of variable z (Fig. 1), because they are based on the 
covariance of the background which may be negative.  
The off-diagonal nudging coefficients have no direct 
effect on the e-folding time of the system. 

 

 
 
Figure 1. The average (frozen) hybrid nudging-EnKF coefficients 
in the first 3000-step period in each equation in HNKF4.  The 
dashed line denotes the nudging coefficient magnitude of the 
traditional nudging approach applied here. 
 

Because the hybrid nudging-EnKF approach 
with the full nudging magnitude matrix obtains  
better  results  than  that with the diagonal elements 
only, the  off-diagonal nudging coefficients play an 
important role in further reducing the RMS error 
although they are small.   The Lorenz system with 
three variables can be seen as a trajectory of a particle 
in a three-dimensional space:  we can see that the 
effects of the off-diagonal nudging coefficients offer 
a more accurate direction and magnitude of forcing 
on the particle from the background towards the 
observation, which leads to faster and more accurate 

interaction between the background and the 
observation and smaller RMS errors.  This may be 
the reason that using the full nudging magnitude 
matrix produces better results than using the diagonal 
elements only. 

Since running ensembles and applying the 
EnKF can be quite expensive in real-time NWP 
applications, we wanted to determine proof of 
concept that historical nudging coefficients from 
hybrid nudging-EnKF schemes can be effective in 
future data assimilations.  We have rerun the previous 
HNKFx and HNKDx experiments with time invariant 
(frozen) nudging coefficients based on the temporally 
averaged values of the previous experiments to create 
FHNKFx and FHNKDx, in the first and second 3000-
step periods.  The frozen nudging coefficients of 
FHNKF4 are temporally averaged from HNKF4 and 
are shown in Fig. 1.  The results of FHNKFx and 
FHNKDx during the first 3000-step period are also 
shown in Table 1.  The average RMS analysis errors 
of FHNKFx and FHNKDx are somewhat larger than 
HNKFx and HNKDx respectively, but are generally 
similar or smaller to those from TNGAx.  When the 
half-period of the nudging time window decreases (to 
x=2 or x=1), the FHNKFx and FHNKDx get much 
better results than the TNGAx.   This is likely 
because the nudging coefficients have become much 
larger in magnitude, possibly larger than the physical 
forcing terms, thereby violating the assumption that 
the artificial nudging terms should not be a dominant 
forcing in the model equations. 
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Table 2 shows the results of using these average 
(frozen) hybrid nudging-EnKF coefficients in the 
second 3000-step period.  The average RMS analysis 
errors of FHNKFx and FHNKDx are smaller than 
those of TNGAx (except for FHNKD8 and 
FHNKD4).  So the off-diagonal terms helped to 
produce RMS errors that were still smaller than those 
using traditional nudging, but these errors were still 
larger than those using the EnKF through this period, 
as expected.  Thus the historical hybrid nudging-
EnKF coefficients in the previous 3000 time steps 
may have some value in the next 3000 time steps.  
This suggests that after integrating the ensemble 
forecast and calculating the EnKF gain matrix once, 
the average hybrid nudging-EnKF coefficients, 
especially the full matrix, can be determined and 
applied in the future.  This is the same general idea 
used in some calibrations of ensemble forecasts that 
apply corrections from the recent past to future 
forecasts (Raftery et al. 2005). 

RMS analysis error in the traditional nudging 
scheme increases with decreasing the half-period of 
the nudging time window (from x = 8 to x = 1).  
Results of TNGA1 with the same nudging 
coefficients as TNGA2, TNGA4, and TNGA8 had 



All of the previous experiments used an 
observation density of one per 25 time steps, and we 
computed the RMS errors against the truth state 
every time step.  Now we investigate the effects of 
different observation densities (one per 10 time steps 
and one per 50 time steps) for traditional nudging and 
both hybrid methods.  Similarly the average RMS 
analysis error in the traditional nudging scheme 
(TNGA4) increases while the observation density in 
time is reduced, as shown in Fig. 2a.  Figures 2b and 
2c show that the two hybrid nudging-EnKF schemes 
(HNKF4 and HNKD4) have similar relationships to 
the observation density with the traditional nudging 
scheme, but the difference between the results using 
an observation density of one per 25 time steps and 
one per 10 time steps in the two hybrid nudging-
EnKF schemes is much smaller than that in the 
traditional nudging scheme.  It appears that the

minimal impact as expected because decreasing the 
nudging time window reduces the time that the 
system is gradually forced by the observations, which 
in turn reduces the impact of the observations.  
However, there is not a simple linear relationship for 
the average RMS analysis error with the half-period 
of nudging time window in the two hybrid nudging-
EnKF schemes.  As shown in Table 1, the RMS error 
first decreases with decreasing nudging time window 
and then increases in HNKFx experiments, and the 
error in HNKDx experiments decreases first then 
increases, and decreases again.  Thus, the nudging 
coefficient provided by the EnKF gain matrix results 
in a nonlinear response of the average RMS error to 
the nudging time window.  This may be due to the 
highly nonlinear Lorenz system and the calculation of 
EnKF gain matrix, and the possibility that large 
nudging coefficients decouple the model equations. 
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Figure 2. The RMS error during the first 3000-step period of (a) TNGA4, (b) HNKF4 and (c) HNKD4 with different observation densities.  The 
solid green line denotes an observation density of one per 50 time steps (obs0.5), the dashed blue line indicates an observation density of one per 
25 time steps (obs0.25), and the dotted red line represents an observation density of one per 10 time steps (obs0.1).  The horizontal lines and 
values on the right side of the figure denote the average RMS error during the first 3000-step period. 
 



accuracy of the simulated hybrid nudging state using 
the full matrix is less sensitive to the observation 
density than the other two nudging experiments. 
Figure 2 also shows that the RMS error in the two 
hybrid nudging-EnKF approaches are smaller than 
that in the traditional nudging approach given the 
same observation density, and the RMS error in the 
hybrid nudging-EnKF with the full nudging 
magnitude matrix is the smallest of all three 
experiments.  

Since the hybrid nudging-EnKF approaches use 
the EnKF gain matrix to provide nudging coefficients 
that produce smaller RMS errors in the model, the 
underlying assumption for nudging stated by Stauffer 
and Seaman (1990; 1994) that the nudging terms 
should be constrained to be smaller than the model’s 
physical terms in order to retain the physical 
properties and dynamic balance / intervariable 
consistency of the system may be violated.  Figure 3 
shows the average ratios of the nudging terms over 
the sum of the physical terms in each equation in the 
first 3000-step period of experiment HNKF4.  The 
ratios of the y nudging term in the x-equation and the 
x and y nudging terms in the y-equation are less than 
0.5 but larger than 0.1 (an order of magnitude 
difference in the magnitudes of the nudging and 
physical terms).   The other nudging terms have 
ratios smaller than 0.1.  In other words, the time scale 
of the nudging term (1/G) should be larger than that 
of the smallest physical terms in the model, on 
average.  Otherwise, the artificial nudging forcing 
will disrupt the natural balance of forces within the 
model, which diminishes the role of the model 
equations in the data assimilation.   
 

 
 
Figure 3. The ratios of the nudging terms compared to the physical 
terms averaged over the first 3000-step period in each equation in 
HNKF4.  The dashed line denotes a ratio of 0.1, where the nudging 
term is an order of magnitude smaller than the sum of the physical 
forcing terms. 
 

In contrast to the synchronization of the master 
(truth run) with the slave (model with 
coupling/nudging terms) in Yang et al. (2006) and the 
use of some intermittent assimilation strategies, 
atmospheric data assimilation schemes that make 
small corrections to the model background to correct 
the model trajectory minimize the insertion noise and 
maximize the natural dynamic balance within the 
nudged model state.  Thus complete success with any 
nudging approach in the atmospheric sciences should 
require that the magnitude of the nudging terms be 
constrained relative to the physical forcing terms, so 
that dynamic balance and consistency are retained in 
addition to reducing the RMS errors compared to the 
truth state.  A nudging period which is too short may 
cause the nudging coefficients / nudging strength to 
become too large relative to the other forcing terms, 
and create numerical noise and data rejection. 

Another measure of success for a data 
assimilation scheme in NWP is to improve the 
forecast.  For example, it is important to know if the 
hybrid nudging-EnKF approach with the full nudging 
magnitude matrix is also effective in providing a 
better forecast.  From above, the hybrid nudging-
EnKF approach with only the diagonal elements of 
the nudging magnitude matrix has similar or smaller 
RMS errors than traditional nudging but larger RMS 
errors than the hybrid nudging-EnKF approach with 
the full nudging magnitude matrix.  So here we 
discuss the hybrid nudging-EnKF approach with the 
full nudging magnitude matrix applied to the 
dynamic initialization problem.   

Figure 4 shows the results of dynamic 
initialization on EKFA, TNGA4 and HNKF4, 
respectively.  The scale of the nudging coefficients is 
10 as shown in Fig. 1, so the e-folding time is 0.1.  
Since the minimum time needed for effective 
nudging is generally 2 or 3 e-folding times, assuming 
that this period is less than the error correlation time 
scale, the pre-forecast dynamic-initialization period is 
chosen here as 5, 10 and 20 e-folding times.  This is 
the same as assimilating 3, 5 and 9 observations with 
the observation density of one per 25 time steps.  The 
results of the hybrid nudging-EnKF (Fig. 3g-3i) are 
similar with those of EnKF (Fig. 3a-3c) owing to the 
use of EnKF gain matrix.  Comparing Fig. 3a, 3d, 3g 
using 20 e-folding times to the others, assimilating 
more observations during a longer pre-forecast period 
does not lead to better forecasts necessarily.  
Assimilating 5 observations (10 e-folding times) in 
each data assimilation scheme obtains the best 
forecast (Fig. 3b, 3e and 3h).  The dynamic 
initialization experiments appear to be most effective 
at producing a better forecast than the FCST for a 
time period of 2 to 3 at best.  In this time period, 
HNKF4 and EKFA produce a better forecast than
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Figure 4. The RMS error as a function of time during the dynamic-initialization period and subsequent forecast with different data assimilation 
schemes and various lengths for the dynamic-initialization period in terms of e-folding times (1/G).  EKFA: (a) 20 e-folding times, (b) 10 e-
folding times, (c) 5 e-folding times; TNGA4: (d) 20 e-folding times, (e) 10 e-folding times, (f) 5 e-folding times; HNKF4: (g) 20 e-folding times, 
(h) 10 e-folding times, (i) 5 e-folding times.  The green line is the RMS error of FCST (no assimilation of observations), which is the same in 
every figure, the blue line is the RMS error of each experiment using data assimilation during a pre-forecast dynamic-initialization period 
followed by a free forecast, and the circles denote the times of observations used in the pre-forecast assimilation. 
 
TNGA4 except for the longest pre-forecast period 
assimilating 9 observations.  Thus the hybrid 
nudging-EnKF is also more effective at improving 
the forecast accuracy in this case using dynamic 
initialization than the traditional nudging method 
over the shorter pre-forecast periods.  Traditional 
nudging outperformed the hybrid method for the 
longest pre-forecast period.  Although these results 
may change with different time windows, initial 
conditions, and observation densities, the hybrid 
nudging-EnKF approach also appears to be effective 
for model initialization and improved short-term 
forecasting.  These results suggest that the length of 
the pre-forecast period must be chosen very carefully 
in highly nonlinear cases. 

 
5. SUMMARY 
 

A hybrid nudging-EnKF approach with 
potential use for NWP was explored here, which 
allows the EnKF to provide flow-dependent / time-
varying error covariance to compute the nudging 
coefficients rather than using ad-hoc nudging 
coefficients derived from theory and experience.  
Traditional multiscale nudging methods (Stauffer and 
Seaman 1994) have been proven to be very effective 
and efficient for mesoscale NWP nowcasting 
(Stauffer et al. 2007a) and forecasting (Stauffer et al. 
2007b) applications.  In the former, multiscale 
nudging is used in a model forecast for current 



conditions (called a “nowcast”), available just ahead 
of the clock and continuously assimilating standard 
and special observations as the model integrates 
forward in time to provide high quality 
meteorological information for Army and Marines 
Corps use.  In the latter, a “running start” dynamic 
initialization using multiscale nudging of standard 
and special observations at 36-km, 12-km, 4-km and 
1.3-km horizontal model resolutions over the 
complex terrain of the Italian Alps and Torino plains 
for the 2006 Winter Olympics, produced improved 
initial conditions and subsequent 24-h forecasts for 
the Department of Defense for hazard prediction and 
consequence assessment.  The model cloud, 
precipitation and local circulations were spunup at 
the initial time, which improved the short-term 
forecasts.  The nudging magnitude and weighting 
functions were based on theory and past experience 
including terrain considerations.  

This hybrid nudging-EnKF approach explored 
here contributed to a more rapid assimilation of the 
data and a better fit of an analysis to the data 
(decreased RMS errors compared to the truth), and 
improved forecasts, than the traditional nudging data 
assimilation scheme.  This is promising because the 
hybrid method also accounts for model background 
error based on ensemble spread, and observation 
errors.  However, the magnitude of the hybrid 
nudging coefficients should be constrained so that the 
nudging terms are smaller than the physical terms in 
the model equations on average, so that the time scale 
for the nudging term is longer than that of the 
smallest physical terms in the model (e.g., Stauffer 
and Seaman 1990).   

A set of temporally averaged hybrid nudging-
EnKF coefficients was obtained during a historical 
period using the hybrid nudging-EnKF approach.  
These temporally averaged hybrid nudging-EnKF 
coefficients were found to have added value in a 
future period for analysis.  Therefore, archived hybrid 
nudging-EnKF coefficients may provide some useful 
statistical information for defining the nudging 
coefficients during the dynamic initialization period 
for future forecast applications since the EnKF can be 
quite expensive in real-time NWP applications.  This 
work with a “toy” model representing a highly 
nonlinear system such as the atmosphere serves as a 
test bed for further experimentation in more 
sophisticated models such as a shallow water model 
and three-dimensional mesoscale model.  These 
results offer a proof of concept that will be further 
analyzed and used to begin development and testing 
of a hybrid nudging-EnKF in the Weather Research 
and Forecast (WRF) model. 
 
6. ACKNOWLEDGMENTS 

This research is supported by DTRA contract no. 
HDTRA1-07-C-0076.  The authors would like to 
thank Sue Ellen Haupt and George S. Young for 
helpful discussions and comments. 
 
7. REFERENCES 
 
Evensen, G., 1994: Sequential data assimilation with 

a nonlinear quasi-geostrophic model using 
Monte Carlo methods to forecast error statistics. 
J. Geophys. Res., 99(C5), 10143-10162. 

Kalata, P. R., 1984: The tracking index: A 
generalized parameter for α-β and α-β-γ target 
trackers. IEEE transactions on aerospace and 
electronic systems, AES-20, 174-182. 

Lorenz, E., 1963: Deterministic non-periodic flow. J. 
Atmos. Sci., 20, 130-141. 

Painter, J. H., D. Kerstetter, S. Jowers, 1990: 
Reconciling steady-state Kalman and Alpha-Beta 
filter design. IEEE transactions on aerospace 
and electronic systems, 26, 986-991. 

Stauffer, D. R., and N. L. Seaman, 1990: Use of four-
dimensional data assimilation in a limited-area 
mesoscale model. Part Ι: Experiments with 
synoptic data. Mon. Wea. Rev., 118, 1250-1277. 

Stauffer, D. R., and J.-W. Bao, 1993: Optimal 
determination of nudging coefficients using the 
adjoint equations. Tellus, 45A, 358-369. 

Stauffer, D. R., and N. L. Seaman, 1994: Multiscale 
four-dimensional data assimilation. J. Appl. 
Meteor., 33, 416-434. 

Stauffer, D.R., A. Deng, G.K. Hunter, A.M. Gibbs, 
J.R. Zielonka, K. Tinklepaugh, and J. Dobek, 
2007a: NWP goes to war …, 22nd Conference on 
Weather Analysis and Forecasting/18th 
Conference on Numerical Weather Prediction, 
June 25-29, Park City, UT. 

Stauffer, D.R., G.K. Hunter, A. Deng, J.R. Zielonka, 
K. Tinklepaugh, P. Hayes, and C. Kiley, 2007b: 
On the role of atmospheric data assimilation and 
model resolution on model forecast accuracy for 
the Torino Winter Olympics, 22nd Conference on 
Weather Analysis and Forecasting/18th 
Conference on Numerical Weather Prediction, 
June 25-29, Park City, UT. 

Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. 
Polakowski, 2005: Using Bayesian model 
averaging to calibrate forecast ensembles. Mon. 
Wea. Rev., 133, 1155-1174. 

 Yang, S., D. Baker, H. Li, K. Cordes, M. Huff, G. 
Nagpal, E. Okereke, J. Villafane, E. Kalnay, and 
G. Duane, 2006: Data Assimilation as 
synchronization of truth and model: experiments 
with the three variable Lorenz system. J. Atmos. 
Sci., 63, 2340-2354. 

 



 


