
APPLICATION OF THE MODE OBJECT-BASED VERIFICATION TOOL FOR 
THE EVALUATION OF MODEL PRECIPITATION FIELDS

Barbara G. Brown1, Randy Bullock, John Halley Gotway, 
David Ahijevych, Christopher Davis, Eric Gilleland, and Lacey Holland

National Center for Atmospheric Research, Boulder, Colorado

10A.2
1. INTRODUCTION 
In recent years, the verification and numerical

modeling communities have increasingly focused atten-
tion on development of new tools for evaluation of spatial
forecasts of elements such as precipitation, convection,
and clouds. Because these elements exhibit significant
spatial variability, their structure and specific location can
be difficult to forecast; traditional verification measures
[e.g., Critical Success Index (CSI), Root-mean-squared
error (RMSE)] penalize the performance of forecasts
with these types of errors without identifying the cause of
the poor performance. In fact, for many users or decision
making situations, small location errors may not be
important; yet traditional verification measures indicate a
forecast with these errors has little or no skill.

Spatial forecast verification issues are particularly
relevant for high resolution forecasts (e.g., from fine
scale or mesoscale models). Many of the new verifica-
tion developments have focused on methods that pro-
vide more diagnostic information about forecast
performance and can separate location errors from mag-
nitude and other errors. Several different types of
approaches have been developed, including scale-sepa-
ration techniques (e.g., Casati et al. 2004); entity-based
approaches that involve optimal matching of forecast
and observed precipitation regions (Ebert and McBride
2000); and object-based approaches, in which forecast
and observed areas of precipitation (or other element of
interest) are represented and compared as objects, char-
acterized by attributes such as location, size, and inten-
sity (e.g., Baldwin and Lakshmivarahan 2003; Marzban
and Sandgathe 2006, Davis et al. 2006).

This paper describes a new object-based verifica-
tion tool, the Method for Object-based Diagnostic Evalu-
ation (MODE) and its application to precipitation
forecasts from the Weather Research and Forecasting
(WRF) model. The MODE tool is included in the first ver-
sion of the Model Evaluation Tools (MET), a set of model
verification tools that will soon be available to the WRF
community. 

The MODE tool is described more completely in
Section 2, and an example of the application of MODE to
WRF precipitation forecasts is presented in Section 3.

Because results obtained from the application of spatial
verification methods vary significantly as a function of the
spatial scale of the forecast and observation fields, varia-
tions in performance as a function of scale are consid-
ered in Section 4. Future development and applications
of MODE are discussed in Section 5. 

2. THE MODE TOOL
The initial motivation for development of MODE

was to provide a tool that would be able to mimic a
human analyst’s evaluation of forecast performance. For
example, a skilled analyst is able to examine graphics
showing forecast and observed patterns and infer the
quality of a forecast - for example, whether the forecast
area is too far north, too large, not intense enough. Our
goal was to develop a tool that could objectively make
these comparisons. The tool would then be able to pro-
vide meaningful diagnostic information regarding the
good and bad attributes of large sets of forecasts.

MODE is based on a multi-step automated pro-
cess, which includes the following stages:

(a) Object identification;
(b) Measurement of object attributes;
(c) Merging of objects in the same field;
(d) Matching of objects from the forecast and

observed fields;
(e) Comparison of forecast and observed object

attributes;
(f) Summarization and comparison across many

cases.
These steps are summarized in Figure 1 and are
described more specifically in the following subsections. 
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FIGURE 1. Summary of steps involved in application of the 
MODE approach.



2.1 Object identification
MODE is designed with the assumption that the

forecasts and observations are on 2-dimensional scalar
grids, with the same coordinates (i.e., matching grid
points). The first step in the MODE process is to convert
gridded precipitation values into precipitation objects.
Although there are many possible ways to accomplish
this step, the approach that was selected for MODE
involves two processes: (a) convolution and (b) thresh-
olding. The objects identified by this process are called
“simple” objects.

The convolution process smooths the raw data
(using a convolution filter); then a threshold is applied to
create objects that look similar to what a human might
draw After thresholding, the original data values are
restored to object interiors, and the rest of the field is
zeroed out. This process is illustrated with the example
in Figure 2. 

The convolution filter applied in Figure 2 is a sim-
ple circular function. Other types of functions (e.g.,
Gaussian, elliptical) could be applied instead of the circu-
lar function; however our experience has indicated that
the circular function works well in most cases. The circu-
lar filter can be defined using a single parameter, R, the
radius of the averaging region. In Figure 2, the radius
applied is four gridpoints.

The second parameter required for object identifi-
cation is the threshold, T. The choice of this parameter
essentially depends on whether we are interested in
more or less intense precipitation areas. Use of a large T
will eliminate areas with low intensity precipitation and
will result in smaller objects; use of a small T will result in
broader areas of precipitation, and (in many cases)
fewer objects. The value of T used in Figure 2 is 2.5 mm.

Together R and T can be used to represent and
select the scale of precipitation of interest. This capability
is discussed further in Section 4.

2.2 Object attributes
Attributes of the precipitation objects are used for

three purposes: (a) to merge objects within a single fore-
cast or observed field; (b) to match forecast and
observed objects; and (c) to summarize the performance
of forecasts by comparing attributes between matched
forecast and observed objects. Many of the attributes are
defined geometrically, including object characteristics
such as location, size, aspect ratio, and complexity. All of
these attributes are defined mathematically in Bullock et
al. (2007). Other attributes are based on the precipitation
values inside the objects; currently the MODE computes
several quantiles of precipitation values (e.g., the 0.25th,
0.50th, 0.75th, and 0.90th quantiles) within each object.
These quantiles provide a representation of the distribu-
tion of precipitation values, including the “average” value
and the extremes, within an object.

In addition to the attributes mentioned here (and
other typical attributes), specialized attributes related to
a particular forecast application can also be defined.
These attributes might only be used for comparing fore-

cast and observed objects (i.e., they might not be used in
the matching process). For example, for aviation applica-
tions it is of interest to know the density of precipitating
systems. An attribute related to the density of objects
could easily be devised and compared between forecast
and observed objects.

Using these single object attributes, attributes for
object pairs can now be defined. Typically one of the two
objects constituting the pair will be a forecast object, and
the other will be an observed object, though this need
not always be true. These “pair” attributes are used in

FIGURE 2. Example of a forecast of 3-h precipitation 
accumulation from the WRF model (a 12-h forecast valid at 

0000 UTC on July 2, 2001) on a 22-km grid. Raw precipitation 
values are shown in (a), and the convolved values are shown 
in (b). The masked regions shown in (c) result from application 
of the threshold. The final field of objects is shown in (d), after 
the raw values are restored to each of the object grid points. 

For this example, the convolution radius, R, is 4 gridpoints, and 
the threshold, T, is 2.5 mm.

(a)

(b)

(c)

(d)



the process of object matching and merging (discussed
in the next section). In particular, a pair attribute mea-
sures the similarity of the values of a particular attribute
for the two objects in the pair. Typical pair attributes
include the differences or ratios of the geometric and
intensity attributes. Examples include centroid distance
(i.e., the distance between two centroids); area ratio (i.e.,
the ratio of the areas of the two objects); intersection
area (i.e., the amount of overlap between the two
objects); angle difference (i.e., the difference in orienta-
tion between the two objects); and median intensity ratio
(i.e., the ratio of the median intensity values for the two
objects).

2.3 Merging and matching
Object matching is the process of associating

objects in one field with objects in the other field. Object
merging is the process of associating one or more
objects in the same field; following merging the individual
simple objects are considered to be parts of a larger
composite object. When merging is done, attributes can
be recalculated (if desired) for the composite object in
the same way they were calculated for the component
simple objects. 

Currently MODE uses a fuzzy logic process (e.g.,
Yager et al. 1987) for both merging and matching
objects. Although a variety of alternative approaches,
including binary image matching (Gilleland et al. 2007)
and cluster analysis (Marzban and Sandgathe 2006)
could also be used, the fuzzy logic approach has the
advantage of objectively applying human judgments
about how objects should be matched, and allows
matching and merging to be based on a large variety of
attributes.

Suppose one has a collection of attributes
that are believed to be relevant to

the merging and matching problem. The first step is to
define interest maps  to indicate which values of
the attribute i should “count” heavily and which should
not. Interest maps typically take values either in the
range [0, 1] or [-1, 1], with 0 indicating no interest, and 1
indicating strong interest. Simple examples include (i) Ii
is an increasing function (high values of  are more
interesting), and (ii) Ii is a decreasing function (low val-
ues of  are more interesting). In general though,
attributes often require slightly more complicated interest
maps. 

An example of an interest map used by MODE is
shown in Figure 3. In this mapping, median intensity
ratios between 0.7 and 1.5 are assigned an interest
value of 1. Values less or greater than 0.7 are assigned
smaller interest values, decreasing to a value of 0 for
ratios of 0 and 4. 

Next, confidence maps  are chosen. These
confidence maps reflect, roughly, how much we “believe”
the (measured or calculated) value of the attribute i.

Confidence maps typically take values in the range [0, 1].
Note that while each interest map Ii is a function of the
single attribute i only, each confidence map Ci is a func-
tion of the entire attribute vector .

As a simple example, consider the situation
where the local wind is measured with a combined ane-
mometer/windvane. If  is measured wind speed, and

 is measured wind direction, then low values of mea-
sured wind speed will typically result in a poorly resolved
wind direction. In this case the confidence map C2 for the
wind direction should be chosen so that low values of
wind speed  give a low value of C2. For MODE, a con-
fidence map is used for the angle difference paired
attribute. In particular, for objects with an aspect ratio
(ratio of the lengths of the two major axes) near to one,
the orientation angle is not a meaningful measure. The
confidence for the angle difference between two orienta-
tion angles is the geometric mean of the confidence val-
ues for the individual orientation angles.

Finally, scalar weights wi are chosen for each
attribute to reflect their perceived relative importance.
Typically the weights are nonnegative. Assigning a value
of zero to some wi effectively “turns off” the contribution
of  to the final decision. In our case, weights and inter-
est and confidence maps were chosen through discus-
sions with researchers in the field of convective
precipitation systems. In general, the participation of
such “experts” in the design of fuzzy logic systems is
highly desirable.

All of these ingredients are combined to form the
total interest function :
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FIGURE 3. An example of an interest value map, for median 
intensity ratio. 

α

α1
α2

α1

αi

T α( )

T α( )

wiCi α( )Ii αi( )
i
∑

wi
i
∑

------------------------------------------=



A threshold is applied to the total interest function to
determine whether a good match has been made. A typ-
ical total interest threshold applied in MODE is 0.7.

The fuzzy logic engine is used both to merge
objects in individual fields and to match objects between
forecast and observed fields. These steps can either
take place in sequence or in parallel. In the sequential
approach, the simple objects in the forecast and
observed fields are individually merged into composite
objects that are then matched. In the parallel approach,
matching and merging occur at the same time. For
example, the merging of observed simple objects may
depend on whether particular sets of observed objects
are well matched to the same forecast object.

Several approaches for the merging/matching
steps have been investigated, and each has its own set
of advantages and disadvantages. An approach that
seems to perform quite well - in terms of identifying and
matching reasonable composite objects - involves both
the parallel approach and the application of a second
threshold to the observed field to combine neighboring
objects. This approach was used for the example shown
in the following section.

3. APPLICATION TO WRF PRECIPITATION 
FORECASTS
The MODE has been applied to many cases from

the WRF model. The example presented in this section
is based on WRF output from the Storm Prediction Cen-
ter’s (SPC’s) 2005 Spring Program, and in particular pre-
cipitation fields from the Advanced Research WRF
(ARW) run at a 2-km horizontal resolution but provided
on a 4-km grid. The observations are based on the
NCEP Stage II precipitation analysis (Lin and Mitchell
2005).

Figure 4 shows the “raw” WRF and Stage II grids
for a case valid at 0000 UTC on 1 June 2005. The values
shown are 1-h precipitation accumulations; the WRF out-
put is based on a 24-h forecast initialized at 0000 UTC.
Figure 5 shows the precipitation objects created using a
convolution radius of 15 grid squares and a threshold of
0.05 in. Color coding indicates which objects were
merged and matched. Dark blue objects were
unmatched. 

For this case, five simple objects were identified in
the WRF field and six simple objects were identified in
the Stage II analysis. Two small WRF objects were
unmatched and could be categorized as false alarm
areas. The interest values for the matched simple
objects were quite large, ranging from 0.85 to 0.97. A
total of three composite objects were matched between
the forecast and observed fields. 

Some attributes of the composite objects shown
in Figure 5 are listed in Table 1. These attributes include
area, distance, and intensity measures, as well as the
object intersection and union areas. Both individual and
pair attributes are shown. As shown in Table 1, the three
composite forecast objects were somewhat too large,
compared to the analysis objects, indicating some over-
forecasting. This difference is relatively small for Object

3. Centroids of the forecast and observed composites
were located 20-30 gridpoints apart; however, the con-
vex hulls for all three objects overlapped, indicating the
objects were in relatively close proximity. Finally, the
WRF tended to overforecast precipitation intensity, for
both the median and 0.90th quantile values of precipita-
tion.

In contrast to these relatively simple but extensive
attribute measures, traditional verification of this forecast
would indicate POD=0.40, FAR=0.56, and CSI=0.27.

Ideally results like those computed for the 1 June
case would be combined with results for a large number
of cases to create a more complete picture of forecasting
performance under varying conditions. In addition, as
noted earlier, attributes could be evaluated that would be
meaningful for specific forecast users. These steps
would complete the set of steps involved in using MODE
for forecast verification (Figure 1).

4. SUMMARIZING PERFORMANCE 
VARIATIONS WITH SCALE
The convolution radius, R, and precipitation

threshold, T, are closely tied to the scale of the precipita-

FIGURE 4. (a) WRF ARW-2 and (b) Stage II precipitation 
values for 0000 UTC 1 June 2005.

(a)

(b)



tion areas that are considered by MODE. Thus, it is pos-
sible to examine forecast performance across scales
simply by examining particular performance statistics as
a function of R and T. The “quilt” plot presented in Figure
6 shows an example of a statistic that measures how
well forecasts and observation objects are matched, as a
function of R and T. The statistic shown is the median of
the maximum interest values for each of the forecast
simple objects. Larger values of this statistic indicate that
the forecast and observed objects have a greater chance
of matching (i.e., having an interest value that exceeds
the threshold of 0.7 in this case). The values in Figure 6
are based on nine cases from the 2005 SPC spring pro-
gram. Examination of this figure indicates that the (R,T)
combination used to define the objects in Figure 5 are
associacted with a region of the diagram with relatively
large total interest values. In addition to examining per-
formance (as defined by any attribute or attribute func-
tion of interest) as a function of scale, figures like this
can help in the selection of reasonable values of R and T
for defining objects.

5. SUMMARY AND CONCLUSIONS
This paper has described one of several emerging

tools for the evaluation of spatial forecast fields. The
MODE tool is able to provide a large variety of diagnostic
and meaningful information about the performance of
forecasts of elements such as precipitation or convec-
tion.

Although generally designed for the evaluation of
forecasts from mesoscale models, the MODE could eas-
ily be adapted to evaluate information from regional cli-
mate or chemistry models. New capabilities that are in
progress include methods for evaluating ensemble fore-
casts and incorporation of the time dimension (e.g.,
through creation and evaluation of 3-dimensional
objects). 
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FIGURE 5. Single and composite objects identified for the 
case shown in Fig. 4 for (a) WRF and (b) Stage II analysis. 
Colors identify objects that are matched and merged. Dark 

blue objects are not matched.
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TABLE 1. Example attributes and attribute comparisons for 1 
June 2005 case shown in Figures 4 and 5.

Attribute or 
comparison

Composite object number

1 2 3

WRF area 7,830 4,632 6,933

Stage II area 5,973 3,746 6,585

Area diff 1,867 886 348

Area ratio 1.31 1.24 1.05

Intersection area 2,753 1,534 2,074

Union area 10,467 6,335 10.913

Int/Union 0.26 0.24 0.19

Centroid distance 255 288 226

Convex hull distance 0 0 0

WRF Median 
intensity 10.00 5.01 15.00

St II Median intensity 8.00 7.00 8.00

Median intensity 
ratio 1.25 0.72 1.88

WRF 0.90th intensity 47.01 43.01 67.00

St II 0.90th intensity 26.01 15.00 63.00

0.90th intensity ratio 1.81 2.87 1.06



ing the SPC spring program WRF model output and
Stage II precipitation observations.
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