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1. IMPORTANCE OF SUB-GRIDSCALE WINDS

Winds at the surface play a key role in climate
processes by determining air-sea energy and gas
exchanges. Although steady and continuous in
some regions, these non-linear exchanges can be
dominated by the tail of the wind speed distribu-
tion in regions and periods of strong wind vari-
ability. Such variability includes climatically exten-
sive regions such as the Intertropical Convergence
Zone (ITCZ) where convective downdrafts are com-
mon (Donelan et al., 2002), to propagating westerly
wind bursts on intra-seasonal timescales (Weller
and Anderson, 1996), to storm track gustiness. Sur-
face heat and energy fluxes depend non-linearly on
wind speed magnitude (Freely et al., 2004; Renfrew
et al., 2002; Wang et al., 1998), are sensitive to the
tails of the wind distribution, and hence vary sig-
nificantly on spatio-temporal scales not resolved by
GCMs. NASA QuikSCAT data offer the opportunity
to characterize wind speed probability density func-
tions (PDFs) across climatically significant spatial
and temporal scales (e.g., Monahan, 2006a). I pro-
pose to use these data to improve understanding
and prediction of fluxes from sub-gridscale winds,
and thus improve atmosphere-ocean coupling in
models contributing to the fifth IPCC assessment
report.

The NASA QuikSCAT scatterometer dataset 1

provides six complete years (Jan./2000–Dec./2005)
of accurate (Bourassa et al., 2003), twice-daily in-
stantaneous ocean surface wind speed estimates
(Chelton and Freilich, 2005) at 0.25◦ × 0.25◦ res-
olution. The 2000–2005 climatological mean of
four statistics of the surface wind speed PDFs
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computed from QuikSCAT measurements illus-
trates the global spatial variation of the mean wind
speed Ū , its temporal variability (shown as stan-
dard deviation σ), Weibull shape factor k (defined
below), and maximum value Umax (Figure 1, row 1,
columns 1–4, respectively). NCEP reanalysis
which incorporate QuikSCAT and constraints from
other data streams, are a second observationally-
based estimate of global surface winds. Consistent
with the relatively coarser (6-hourly vs. instanta-
neous) NCEP data, global oceanic regions are
dominated by negative wind speed mean and
maximum differences (Figure 1, second row).

1.1 Wind Speed Biases

Our level of understanding of global ocean sur-
face wind speed variability is demonstrated, in part,
by the biases between observed wind speeds and
predictions of general circulation models (GCMs).
The GCM we employ is the Community Atmosphere
Model (CAM3) (Collins et al., 2006), the atmo-
spheric component of the NCAR Community Cli-
mate System Model (CCSM). Simulations are per-
formed at T85 resolution (approximately 1.4◦ × 1.4◦

equatorial with 26 levels). Sub-sampling the CAM3
2000–2005 predictions (forced by observed sea
surface temperatures (SSTs)) at QuikSCAT over-
flight times (0600 and 1800 local time) permits a di-
rect intercomparison of QuikSCAT and CAM3 wind
speed climatologies. Capps and Zender (2007) de-
scribe these climatologies in greater detail.

Significant biases between observed and mod-
eled wind speed and wind speed variability occur
from 2000–2005 (Figure 1, third row). Most of
the 0.39 m s−1 global mean CAM wind speed bias
occurs in the southern hemisphere (SH) circum-
polar region, northern hemisphere storm tracks,
and trade wind regions. Sizable swaths of biases
∼ 3.0 m s−1 occur along the SH storm track near
Australia. CAM3 underestimates wind speeds in
the ITCZ and along the western coasts of Africa,
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Figure 1: QuikSCAT 2000–2005 mean 10 m ocean surface wind speed, standard deviation, Weibull shape, and
maximum (top row). NCEP−QuikSCAT differences and CAM3−QuikSCAT biases (rows two and three, respec-
tively). Max/Min/RMSE values at each top right corner. CAM3 is sub-sampled at overflight times (Capps and
Zender, 2007).

South and North America by ∼ 2.5 m s−1. The 6-
year mean biases shown under-represent the root
mean square bias in regions where errors of oppo-
site signs mutually cancel when averaged.

I hypothesize that the non-linear depen-
dence of surface momentum fluxes on wind
speed (Figure 2) causes significant portions
of these GCM wind speed biases. This would
be consistent with previous studies concerned
with the effects of surface flux non-linearities on
air-sea exchange (e.g., Wang et al., 1998; Freely
et al., 2004). This project will use QuikSCAT,
TAO/TRITON and NCEP data to quantify and to
remediate these biases. Surface energy and mo-
mentum fluxes are usually estimated as a function
of mean wind speed, stability, and thermodynamic
gradients based on extensive in-situ studies (e.g.,
Edson et al., 2007; Miller et al., 1992; Fairall et al.,
1996). When all other properties are held con-
stant, stronger ocean surface winds drive strongly
non-linear momentum fluxes. The non-linearity
is convex, such that momentum fluxes increase
more per unit wind speed as wind speed increases
(Renfrew et al., 2002)(Figure 2). The convex shape
of the surface drag response to stronger winds
dictates that the momentum flux predicted by the
mean wind speed of a wind PDF is less than the
mean momentum flux of the fully resolved wind

PDF.

1.2 Surface Flux Biases

Typically GCMs do not represent processes on
scales smaller than 100 km, such as mesoscale
circulations, thermal and mechanically-induced
turbulence, and convective downdrafts. Because of
their non-linearity with wind speed, surface fluxes
strongly depend on these sub-grid scale sources of
wind variability which contribute significantly to the
mean climate state. Mesoscale enhancement of
surface fluxes resulting from sub-gridscale convec-
tion accounts for up to 30% of total tropical ocean
fluxes (Esbensen and McPhaden, 1996). Miller
et al. (1992) improved simulated tropical circulation
and precipitation distribution by accounting for
convectively-induced wind variability. Negatively
buoyant downdrafts from precipitating cumulonim-
bus clouds also create sub-grid fluctuations in
surface winds. Often, the spatial extent of these
downdrafts is much greater than the convective
cloud itself (Johnson and Nicholls, 1983).

2. APPROACH

My approach to capturing the influence of sub-
gridscale winds on climate is to parameterize
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Figure 2: Ocean surface energy and momentum
flux dependence on wind speed from Fairall et al.
(1996) as used in CAM3.

Figure 3: Instantaneous QuikSCAT wind vector
observations at 0.25◦ × 0.25◦ plotted over a T42-
resolution grid (dark lines). Colors denote wind
speed ranging from 1 m s−1 (blue) to 15 m s−1 (pur-
ple).

the physical information present in the QuikSCAT
dataset which, at 0.25◦ × 0.25◦ spatial resolution,
has areal resolution O(100) times finer than typ-
ical GCMs (Figure 3). The (approximately 160)
sub-gridscale QuikSCAT data points define the ob-
served spatial and temporal wind speed PDF in
each typical T42 GCM grid cell. QuikSCAT captures
(twice per day) the remarkable spatial variation of
sub-gridscale winds (Figure 3).

2.1 Quantifying Variability

I fit the observed and modeled wind distributions

to the two-parameter Weibull PDF which has long
been used for surface wind speeds (e.g., Justus
et al., 1979; Monahan, 2006b). The Weibull scale
and shape parameters characterize the mean wind
speed and wind variability, respectively. The shape
parameter k ≈ (Ū/σ)1.086 varies nearly linearly with
mean wind speed Ū and inversely with the stan-
dard deviation σ. Regions with moderate and per-
sistent mean wind speeds (trade-winds) have mod-
erate shape values (∼ 8) while regions with low
mean winds and high variability (the doldrums) have
shape values near 2 (Figure 1, third column).

CAM overestimates the persistence of the
trades and overestimates gustiness within the
doldrums. Positive shape biases up to 1.5 occur in
the trade-wind region northwest of Australia and the
north Atlantic and Pacific trades. Large negative
biases ∼ 50% of observed shape values are found
throughout the equatorial regions. Regions where
the measured and modeled mean winds agree and
the shape values (i.e., PDF breadth) do not are
particularly interesting. My premise is that within
these regions CAM3 surface flux biases can be
remediated by redistributing the predicted PDF
(which has the correct mean wind speed) into the
observed PDF.

2.2 Sensitivity to Sub-gridscale Winds

I tested the sensitivity of modeled surface fluxes
to representation of the sub-gridscale wind PDF
to ascertain the approximate magnitude of the
flux bias attributable to completely neglecting sub-
gridscale winds. In this study, CAM is forced with
observed SSTs from 2000–2005, coincident with
the QuikSCAT period. At each 20-minute timestep,
CAM calculated two different sets of surface fluxes:
(1) The control, based on gridcell mean wind speed
Ū , and (2) The experiment, which resolves a four
bin wind speed PDF which preserves Ū and diag-
noses the PDF width from Ū based on empirical
studies of Justus et al. (1978).

The sensitivity, illustrated by the difference
(experiment−control) in the mean June results
(Figure 4), is largest for the momentum fluxes.
This is not unexpected, since momentum is most
non-linear with wind speed (cf. Figure 2). The ex-
periment (resolved sub-gridscale PDF) dissipates
∼ 0.02 N m−2 (about 10%) more momentum than
the control in the June global mean (Figure 4). This
is most pronounced in the southern ocean, where
winds are strong. The sub-grid winds change
the climatological June latent and sensible heat
fluxes by only ∼ 1% on average. Sensitivities of

3



Figure 4: Sensitivity of mean 2000–2005 June sensible heat (left), latent heat (middle) and momentum (right)
fluxes to representation of sub-gridscale winds. Differences show predictions with four wind bins per gridcell minus
standard one-bin predictions.

Figure 5: Changes in near surface wind speed
when resolving a 4-bin wind PDF compared to a sin-
gle gridcell mean wind speed (10-year T42 CAM3
simulations).

the energy fluxes have pronounced regional and
seasonal structure near western boundary currents
(due to strong air-sea temperature contrasts) and
in the subtropics (probably due to strong surface
insolation/evaporation).

In a similar study, a 4-bin non-physical wind
speed PDF was implemented within CAM forced by
a slab ocean model. The 10-year duration of this
simulation provided ample time to allow for changes
in surface flux climatologies to feedback throughout
the climate. The results of this simulation suggest
that the non-linear momentum flux response to
sub-gridscale winds results in a reduction in GCM
mean wind speed biases (Figure 5). Especially
encouraging is the reduction in mean wind speed
throughout the trades and SH circumpolar.

2.3 Determining Physically Based Wind PDFs

I will combine QuikSCAT-observed wind PDFs
with TAO/TRITON and NCEP-estimated atmo-
spheric states to diagnose physically-based
surface sub-gridscale wind PDFs from the GCM-
predicted atmospheric state. Following Cakmur
et al. (2004), I will begin by assuming sub-gridscale
winds originate primarily from three processes:
thermally driven buoyancy, mechanically induced
(shear-driven) turbulent kinetic energy (TKE), and
convective downdrafts. Turbulence diagnostics uti-
lized will include the Deardorff velocity (Deardorff,
1970), turbulence kinetic energy and downdraft
mass flux. Each turbulence diagnostic will influence
the shape parameter of the sub-gridscale wind PDF.
These three processes are assumed to be uncor-
related, and to broaden the total PDF in quadrature.

4. BROADER SIGNIFICANCE

It is thought that climate change will increase
weather extremes (Cubasch and Meehl, 2001)
which often occur at the tail end of wind speed
PDFs. Although several studies have analyzed the
QuikSCAT global ocean surface wind climatology
(Chelton and Freilich, 2005; Monahan, 2006a,b),
ours is the first attempt (to our knowledge) to
use QuikSCAT data to parameterize sub-gridscale
winds for GCM predictions. Logically other GCMs
that neglect sub-gridscale winds (all of them, to our
knowledge) are susceptible to the biases described
here. Moreover, the techniques I develop and ap-
ply to wind speed measurements could be modi-
fied to parameterize other sub-gridscale measure-
ments (e.g., surface reflectance, canopy height,
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snow cover) into physical process models.
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