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Mesoanalysis of the Interactions of Precipitating Convection and the Boundary Layer
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1. Introduction

The DOE ARM program has promoted understand-
ing of cumulus convection by producing high-quality
“single-column model” observational datasets that al-
low one to run and evaluate single-column models and
cloud-resolving models based on observed large-scale
conditions (Xie and Zhang, 2000; Xie and Coauthors,
2002; Xu et al., 2002). The cloud and radiation fields
produced by such simulations can then be compared
to measurements by an ARM cloud profiling radar, as
well as to satellite-based measurements (Luo et al.,
2003; Luo and Krueger, 2004, 2005; Yang et al., 2006).
This is an excellent evaluation method for stratiform
cloud systems, but not for convective cloud systems,
whose updrafts and downdrafts are inadequately sam-
pled by the cloud profiling radars, and not detectable
from space except by the TRMM precipitation radar,
which has limited sampling at a given location (daily
at its northern limit of 36 deg latitude). However, the
existing observational systems at the ARM Southern
Great Plains (SGP) Atmospheric Climate Research Fa-
cility (ACRF) can be used to provide a much more
extensive statistical characterization of updrafts and
downdrafts in convective cloud systems. The relevant
datasets include the 5-minute Oklahoma Mesonet data
and the hourly Arkansas Basin River Forecast Center
(ABRFC) gridded precipitation data. Because convec-
tive cloud systems generally have strong interactions
with boundary layer circulations and thermodynamics,
the boundary layer wind and thermodynamic fields con-
tain a great deal of information about convective cloud
systems.

We are trying to produce a number of datasets based
on Oklahoma Mesonet data and gridded precipitation
data for mutiple warm seasons that should be very use-
ful for evaluating cumulus parameterizations in GCMs,
and also for evaluating the representation of cumulus
convection and the boundary layer in cloud-resolving
models (CRMs). As the first step, we report in this
extended abstract our preliminary results about how
to estimate the mesonet-averaged cloud base updraft
and downdraft mass fluxes from the surface divergence
field.
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2. Data Sources

Two datasets are used in our analyses, the Oklahoma
Mesonet dataset and the Arkansas-Red River Basin
Forecast Center hourly—gridded precipitation dataset.
The Oklahoma Mesonet (sponsored by University of
Oklahoma and Oklahoma State) provides 5-minute
averaged surface meteorological data in quality as-
sured data files. The Oklahoma Mesonet network
consists of over 100 automated observing stations lo-
cated throughout the state. Data are available from
1/1/1994 to 4/21/2007 (present). Data used in the
current analysis are from May to August, 1997 and
2000.

The Arkansas-Red River Basin Forecast Center
(ABRFC) produces an hourly gridded (4 km x 4 km)
precipitation amount over the river basin. This field is
a combination of both WSR-88D Nexrad radar precip-
itation estimates and rain gauge reports. The ABRFC
performs extensive quality control on these data. The
data are used for the ARM constrained variational anal-
ysis. Data are available from 6/24/1994 to 4/27/2007
(present). Data used in the current analysis are also
from May to August, 1997 and 2000.

The locations of the various data referred to above
are shown in Fig. 1. The Oklahoma Mesonet region is
about 5 deg in longitude by 3 deg in latitude in size.
Evaluating GCMs using our proposed data products
would be straightforward. In this report focus is given
to the results produced based on data in 1997.

3. Method of Analysis and Preliminary Results

Our goal is to estimate the mesonet-averaged up-
draft and downdraft cloud-base mass fluxes, M., and
M. q, from the mesoscale surface divergence field. The
triangle method was used to calculate the mesoscale
horizontal divergence field (div= 0u/0x + dv/dy) di-
rectly from the mesonet station wind measurements
(Dubois and Spencer, 2005; Davies-Jones, 1993). Fig-
ure 2 shows the horizontal divergence obtained from
the Oklahoma Mesonet station data for a fair weather
day, while Figure 3 shows the same for a day with pre-
cipitation. In the figures, each triangle formed from
3 stations is colored according to its divergence value:
blue indicates weak divergence (divergence > 0), pur-
ple indicates strong divergence (> 10* s71), yellow
indicates weak convergence (divergence < 0), and red



39F
38

37E

latitude

36 _'::.:
ssk
3afiili
33 Ll
—100-99 —98 —97 —96 —95
longitude
Figure 1: Map of SGP with every 4th grid point of
the 4-km by 4-km hourly precipitation grid (dots), the
Oklahoma Mesonet stations (red +), and constrained
variational analysis domain (enclosed by blue stars).
AERI profiles were retrieved at the Central Facility

(central blue star) and at the blue stars at 12, 4, 6,
and 8 o'clock.

indicates strong convergence (> 10=* s7!). In Fig-
ure 3, the thick black contours delineate regions with
precipitation rates greater than 2 mm h~!.

When resolved at a scale of 100 m or less, the sur-
face divergence field is obviously related to boundary
layer updrafts and downdrafts because div = —0w/9z,
neglecting density variations. If cloud-base updrafts
and downdrafts are related to boundary layer updrafts
and downdrafts, then we would expect that the sur-
face divergence averaged over regions of convergence
only (div < 0) would be related to M, ,, and that the
surface divergence averaged over regions of divergence
only (div > 0) would be related to M, 4.

The average station spacing of the Oklahoma
Mesonet is about 30 km. This means that the mesonet
very poorly resolves the divergence fields associated
with individual boundary layer eddies. However, the
mesonet can resolve to varying degrees the mesoscale
circulations associated with cumulus and cumulonim-
bus clouds and with mesoscale convective systems.
Therefore we define M,,, the mesonet analog of the sur-
face divergence averaged over regions of convergence
only, and My, the mesonet analog of the surface diver-
gence averaged over regions of divergence only as

— > Aidiv; H(—div;)
> Ai
>, A div; H(div;) (1)
Zq', Ai
where div; is the horizontal divergence of the ith tri-
angle, which has area A;, and H(z) is the Heaviside

M, =

My

step function.

M, and M, are typically nonzero due to convective
boundary layer circulations even when there is no pre-
cipitating convection. Figure 2 is an example. There-
fore, we also define Mj the mesonet surface diver-
gence averaged over regions of convergence > 10~*
s~ !, and Mj, the mesonet surface divergence aver-
aged over regions of divergence > 10~% s~!. We have
found that regions (triangles) with |div;| > 1074 s~}
tend to be associated with regions of precipitating con-
vection. Figure 3 is an example. We calculated the
time series of hourly values of M, My, M, M.

It is well known that convective downdrafts and cold
pools tend to increase the variances of winds ( w and v
components), temperature (T'), and water vapor mix-
ing ratio (¢) in the boundary layer (e.g., Zulauf and
Krueger, 1997; Zulauf, 2001). Figure 4 shows a cold
pool more than 100 km in diameter that was observed
within the Oklahoma Mesonet.We used a 3D CRM sim-
ulation in a 128 km by 128 km domain with a 1-km
horizontal grid size to compare the variances resolved
by a mesonet with a 32-km grid with those resolved by
the 1-km grid. Our results indicate the mesoscale grid
resolves more than 90 percent of the variance during
periods with mesoscale convective systems. We calcu-
lated the time series of hourly values of the mesonet
variances of u, v, T, ¢, and of related quantities in-
cluding moist static energy, h = ¢, T + Lq + gz.

We correlated the divergence—related time series
with the time series of hourly area-averaged precipi-
tation rate (P), which represents to some degree the
cloud—base mass fluxes. Figure 5 shows the lagged
correlations of P with My, M, Mj and Md+, and
standard deviations of moist static energy and wind
obtained from the hourly times series for May—August
1997. The figure shows that (1) M,, M,, M, , and
M are correlated with P, (2) M, and M are better
correlated with P than are M, and My, and (3) M,
and Mj lag P and M,, and M by about 1 h. These
features are just what we would expect for convective
precipitation and indicate that it is possible to retrieval
cloud—base mass fluxes from surface divergence and
other properties. The weak correlation between the
standard deviation of h and P are mainly due to the
contamination of the correlation by the variation of h
induced by synoptical scale events and topographical
effect.

4. Evaluation of the 'Retrieval’ Method Using Model
Simulation Data

We tested our cloud base-mass—fluxes 'retrieval’
methodology by using results from a 54-hour simu-
lation of maritime tropical convective cloud systems



Table 1: Least squares linear fit coefficients and RMS
errors for M .

A B RMS
M, true 0.0059 940 0.0088
M, meso 0.0061 1010 0.0094

Table 2: Least square linear fit coefficients and RMS
errors for M. 4.

A B RMS
Mg ¢rue 0.0007 1030 0.0081
Mg meso 0.0007 1110 0.0084

observed during KWAJEX. The 3D simulation was per-
formed with the UU LES with a horizontal grid size of
1 km and a horizontal domain size of 128 km by 128
km. We assumed that mesonet stations were located
on a regular square grid with 32 km spacing.

Both updraft and and downdraft mass fluxes are cal-
culated at 1050 m. Updraft mass flux occurs in cloudy
grid cells with upward vertical velocity, while down-
draft mass flux occurs in cloudy and/or precipitating
grid cells with downward vertical velocity. Figure 8
shows the time series of cloud-base updraft and down-
draft mass fluxes.

M, and M, are calculated at lowest model grid level
(36 m) using (1). Two different methods are used
to calculate div; for each 32-km square. In the first
method, u and v at all the points on the boundary of
the 32-km square are used to calculate the true value of
div; for the square. In the second method, only u and
v at the four corners of the 32-km square (representing
mesonet stations) are used to estimate div;. M, and
M, calculated using the first method are called true
M, and My, represented by M, e and My trpe. My,
and My calculated by using the second method are
called meso M, and My, represented by M, meso and
My meso- Large scale divergence is added to the true
and meso div; before true and meso M, and M, are
calculated.

How well can we estimate M, , and M, ; from true
and meso M, and M, for a 32-km mesonet grid
size? Figure 6 shows a scatter plot of both M, ¢pqye
and My meso Versus M. ,. The correlation of M.,
and the My, trye is 0.82. The correlation of M., and
M., meso is 0.79. Figure 7 shows a scatter plot of both
Mg true and Mg meso versus M. 4. The correlations
of Mc,q and My trye and My, es0 are 0.90 and 0.89,
respectively. For comparison, the correlations of P and
M., and M, 4 are 0.77 and 0.93, respectively.

If we assume the following linear relationship be-
tween M., and M,

M., =A+ BM,, (2)

then we obtain the coefficients A, B, and RMS error
listed in Table 1. Similarly the coefficients and RMS
error for the linear fit of M, 4 using My are listed in
Table 2. The differences in correlations and RMS
errors between true and meso methods are small. The
results strongly suggest that it is possible to estimate
M., using either My, ¢rye OF My meso, and to estimate
M. 4 using either My trye of My meso-

Figure 8 shows the time series of M., and M, 4 at
1050 m and M., ,, estimated using My, meso and M. q
estimated using Mg meso- There is generally good
agreement but with a slight time lag in the estimated
values. Figure 9 shows the corresponding lagged cor-
relations of P with M., M. 4, Mg, and M,,. We see
that M, My, and P lag the cloud-base updraft and
downdraft mass fluxes, M., and M. 4, by about 1 h
on average, and that M. 4 is more highly correlated
with P than is M, .

It is instructive to compare Fig. 9 with Fig. 5, which
shows the lagged correlations of P with M, and M,
obtained from the Oklahoma datasets. The most rele-
vant aspect is that, taken together, these results imply
that M, and Mgy are most correlated with M., and
M. q for lags of 1 to 2 h. We also see that both Okla-
homa and KWAJEX have a maximum correlation be-
tween P and M, at zero lag. However, the maximum
correlation between P and My occurs at 1 h in Okla-
homa, and at 0 h for KWAJEX. This difference is not
surprising. There are several potential explanations. A
good candidate is that the mesoscale cold pools that
contribute to M, are larger and more intense in Ok-
lahoma, due to higher cloud bases and drier boundary
layer air, and therefore M, takes longer to maximize.

The maximum correlations between M,, and precipi-
tation are similar for Oklahoma and KWAJEX (0.67 vs
0.69) but for M, and precipitation, the correlation is
significantly larger for KWAJEX (0.92 vs 0.70). These
results suggest that the relationship between updrafts
and precipitation may be more universal than that be-
tween downdrafts and precipitation.?

5. Summary

Two observational datasets, the Oklahoma Mesonet
data and the hourly ABRFC gridded precipitation data
from May to August in 1997, were used to test the
"retrieval’ of the mesonet-averaged cloud base updraft

1The critical role of downdrafts in determining the structure
of convective systems is well-known.



and downdraft mass fluxes from the surface divergence
field. It is shown that (1) My, M,, M, , and M}
are correlated with P, (2) M, and M are better
correlated with P than are M, and My, and (3) My
and M; lag P and M, and M, by about 1 h. This
indicates that it is possible to retrieval cloud—base mass
fluxes from surface divergence and other properties.

To examine how well this mass fluxes 'retrieval’
method works data from a 54-hour CRM simulation of
maritime tropical convective cloud systems observed
during KWAJEX were used, along with the similar
methods as in the Oklahoma Mesonet analysis. The re-
sults strongly suggest the possibility of estimates M, ,,
(Mc,d) USing either Mu true ( Md true) or Mu meso
(Mg meso)- A generally good agreement was shown
between the true and estimated M, ,, (M. q) by using
My meso (Mg meso). However there is a slight lag in
the estimated values.

Since the CRM simulation was performed over ocean
not land, the results from KWAJEX simulation analysis
should be applied with caution over land. This might
be one of the possible reasons why our defined M and
Mj are not significantly better correlated with M, ,
and M. 4 than M, and M, do. Other possible reasons
may include short simulation time and small simulation
domain.
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Figure 2: Divergence with colored triangles (see text for explanation; values are shown in units of 1075 s™1) and

precipitation contours of 2 mm hr~! (thick black line) at 13 UTC on May 10, 2007.
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Figure 3: Divergence with colored triangles (see text for explanation; values are shown in units of 107> s71)

overlaid with precipitation rate contours (2 mm hr=!) at 11 UTC on May 25, 2007.
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Figure 4: A cold pool represented by deviation of s/c, = T + gz/c, (station values and white contours in K)
from the Oklahoma Mesonet mean at 18 UTC, June 11, 1997. Precipitation rate (2 mm hfl) contour is overlaid.
Barnes (Barnes, 1994a,b) analysis was used to produce this figure.
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Figure 5: Lagged correlations of P with My, M, Mj M;, and standard deviations of moist static energy and
wind for May—-August 1997.
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Figure 6: M., (m s™!) at 1050 m AGL versus M, ¢y (black stars) and My, eso (red crosses). Black and red
lines are linear fits of M, and M, trye and My, meso-
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Figure 7: M., (m s~!) at 1050 m AGL versus M, ¢y (black stars) and My yeso (red crosses). Black and red
lines are linear fits of M. 4 and My trye and Mg meso-
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Figure 8: Time series of M., (black solid line) and M, 4 (red solid line) at 1050 m AGL and M., estimated
using My, meso (black dashed line) and M. 4 estimated using Mg meso (red dashed line).
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Figure 9: Lagged correlations of P with M., M. 4, Mg, and M, for the KWAJEX simulation.



