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1. Introduction 
 
The focus of this paper is on mesoscale four-dimensional data assimilation (FDDA). Because of 
its small spatial size, mesoscale weather is strongly influenced by fast-changing local conditions such as 
cloud cover, friction, and surface heating.  To incorporate these fast-changing events so as to 
maximize the model performance, state-of-the-art mesoscale numerical weather prediction 
(NWP) often makes use of FDDA of high-frequency observations to update the model state 
during the time integration (Daley 1991). The NOAA ACARS (Aircraft Communications 
Addressing and Reporting System) observations taken by commercial aircraft at about every ten 
minutes crisscrossing the nation (Mamrosh 1998) offer valuable data for mesoscale FDDA. Other 
researchers such as at NCAR’s Research Applications Laboratory (Sheu et al, 2002; Liu et al, 
2004) have provided some previous examination of the impact and quality of ACARS in 
mesoscale FDDA. A better understanding of how to take advantage of these high resolution data 
sets can significantly advance our expertise in mesoscale NWP.  
 
A method known as observational nudging (Newtonian relaxation) is employed in the FDDA 
experiments. This empirical approach is based on the work by Hoke and Anthes (1976). There 
are other more sophisticated FDDA methods involving the Kalman filter or three-dimensional 
variational (3DVAR) procedures (Kalnay 2003), but these advanced treatments are much more 
computationally intensive and require background information generally not available in a fast-
response scenario. We believe that the simple Newtonian relaxation technique represents a good 
balance between complexity, timeliness, and accuracy, which is an important guiding principle 
for short-term prediction and nowcasting.  
  
The results of a real-data case study including several 36-h model simulations using the 5th 
generation Mesoscale Modeling System (MM5) (Grell et al, 1994)  are presented. We are 
particularly interested in the impact of mesoscale FDDA on boundary layer (BL) and 
precipitation forecasting. The sensitivity of model forecasts to changes in (1) the nudging parameters 
and (2) the input data density are also examined. 
 
2. ACARS 
 
These data are routed by several cooperating airlines to the NOAA GSD (Global Systems 
Division) for quality control. General information about ACARS included how to access the data 
sets can be found on the website acweb.fsl.noaa.gov. ACARS wind and temperature data are 
collected by many commercial aircraft during both en route and ascent/descent modes of their 
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flights at a very high frequency. At flight altitudes of about 23,000 ft, data are generally taken 
every 5-6 minutes. Near the airports the data spacing is decreased by some airlines. Below 
18,000 ft, a vertical resolution of 1000 to 2000 ft is quite common. More than 150 aircraft 
provide data with a vertical resolution of about 300 ft for the first minute after take-off. ACARS 
can certainly provide useful up-to-date weather information for short-range forecasts.   
 
The quality of ACARS data had been examined by many researchers, e.g., Mamrosh (1998), 
Schwartz and Benjamin (1995), and Lord, et. al. (1984). Estimated wind vector accuracy was 
about 1.8 m/s and estimated temperature accuracy was about 0.5oC. When ACARS was 
compared to radiosondes, root mean square (RMS) deviations were 7.4 degrees in direction and 
5.3 m/s in speed. In comparing ACARS ascent/descent winds and temperatures with 
radiosondes, it was found that temperature differences were less than 2oC on 94 percent of all 
occasions, and less than 1oC greater than 68 percent of the time. Wind speed RMS deviations 
were 4.1 m/s, while direction RMS differences were 35 degrees (mostly due to light and variable 
wind situations).  
 
3. MM5/FDDA Experiments  
 
The MM5 BL scheme over land comprises two basic regimes: nocturnal and free convection.  The 
following BL-related physical options are selected for the simulation experiments:  
• Grell moist-convection parameterization  
• Atmospheric radiation with the effects of clouds (Dudhia et al. 1998).  
• MRF (Hong and Pan 1996) planetary boundary layer  
• Surface heat and moisture fluxes from the ground  
• Surface energy budget to calculate the ground temperature  
• Multi-layer soil thermal diffusion  
 
We experimented with various nesting options in MM5, trying one-, two-, and three-nest 
configurations in conjunction with horizontal grid sizes ranging from 3 km to 20 km. The model 
appeared to be quite reliable and robust, and close examination of model output did not reveal 
any indication of computational instability during the model integrations.  
 
Some basic features of the single-grid MM5 modeling configuration adopted in this study are 
presented in Table 1, while Fig. 1 shows the model domain and terrain. The severe weather event 
of 8-9 May 2005 which occurred in Central Texas was selected for the case study experiments. 
The model initial and lateral boundary conditions were derived from the NWS/NCEP ETA 
model (Black, 1994), which had 50 vertical levels and a horizontal grid spacing of 22 km. All 
model integrations were performed on a SGI Octane 2 workstation.   
 
Horiz  dimens 
& spacing 

Vert   σ 
levels 

Length Form Start time 
UTC/dy/mn 

(67x67)/20 km 24 36 h Non-hydrostatic 00/08/05 
Table 1.  Key MM5 Case Study Parameters 
 
First we carried out a 36-h simulation of the severe weather environment, which involved  a 
dryline perturbation in West Texas and intense convection in Central Texas. This simulation did 
not include ACARS data and is used as the control run (CNTR) to provide a benchmark for 

 2 
 

http://acweb.fsl.noaa.gov/docs/mamrosh-ams-98/
http://acweb.fsl.noaa.gov/docs/mamrosh-ams-98/#schwartz
http://acweb.fsl.noaa.gov/docs/mamrosh-ams-98/#lord


measuring the impact of FDDA. In the subsequent FDDA runs, more than 90 ACARS profiles 
collected across several Mountain and South Central states (Fig. 2) were used for observational 
nudging. In the lower and middle layers, clusters of ACARS reports aligned approximately in the 
north-south direction were found in central Texas and Oklahoma. The data coverage was spread 
more uniformly in the upper layers. Each data point recorded during a flight (at a given time, 
latitude, longitude, and altitude) was treated as one single independent observation. The locations 
of individual observations in terms of the model grid system had to be determined first, and they 
were organized in order of increasing time as required by the MM5 nudging program. 
Explanations for the input data structure as well as the details of the observational nudging 
scheme can be found in the MM5 tutorial notes under the section of Data Used in FDDA (Grell 
et al. 1994).  
 
The ACARS observations obtained for the case study initially consisted of 1928 data points of 
wind and temperature fields. The number dropped to 1213 after averaging observations within 
the same proximity, meaning that they were reported in the same time slot and at the same 
vertical level while within 10 km (half the grid size of the individual model grid points). Many 
more observations were inserted into the model upper layers than the middle and lower layers. 
The first experiment (E1) was a 36-h run with 12-h observational nudging between 12 h and 24 h 
of model integration based on the averaged data set.  
 
The nudging parameters selected in E1 were as follows:  
• Nudging factors (N) for wind and temperature are 4 x 10-4 s-1.  
• Horizontal radius of influence (R) is 100 km from the observation site. 
• Vertical radius of influence (∆σ) is 0.001 centered at the level of σ = 0.995.  
• Time window (∆t) is 30 min centered at the observation time. 
 
An additional three experiments were conducted to test the model’s response to changes in R, N, 
and data density. 

• E2 similar to E1 but R = 50 km. 
• E3 similar to E1 but N = 2 x 10-4 s-1.    
• E4 similar to E1 but with all 1928 data points without the averaging procedure. 

 
3.1 CNTR vs. E1 
 
Figure 3 shows the initial state at the surface and 700 hPa at 00 UTC May 8 2005. A north-south 
oriented dryline is evident in the middle of the model domain. The major features at the surface 
are southerly flow to the east of the dryline and southwesterly flow to the west, creating a 
confluence of air near the dryline. Notable changes in the wind directions from southerly at the 
surface to westerly at 700 hPa (veering profile) occur in South Texas. The 700 hPa confluent 
zone is located in Central Texas and Oklahoma well to the east of the dryline. The average wind 
speed at 700 hPa is on the order of 10 m/s, while at 300 mb (not shown) the flow is 
predominantly southwesterly with a relatively narrow zone of winds in excess of 30 m/s 
stretching from Mexico to the northern boundary of the domain. This stronger zone of 300 mb 
flow generally occurs  over the area of the dryline. Fig. 4 shows the observed surface vector 
winds and surface Td at 12 UTC 9 May 2005. Throughout the 36-h period, across Central Texas 
the southerly surface flow persists and continues to advect moisture inland from the Gulf of 
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Mexico. The Td  gradients along the dry line in West Texas tighten, although they do weaken 
considerably in the Panhandle. The result is a double boundary surface Td structure enclosing a 
diffluence area of relatively weak surface winds. Again, there is confluence associated with the 
dryline. No upper-air jet features appear in the model domain during this time. 
 
Figure 5 shows 24-h and 36-h simulated surface winds and Td from the CNTR run. Throughout 
the first 24 h, a significant weakening of surface circulation occurred in the western half of the 
domain. The MM5 predicted a large increase in the Td gradients in West Texas and a 
northeastward intrusion of dry air and resulting dryline bulging into regions of western Kansas 
and the Oklahoma Panhandle. At 36 h, the middle section of the dryline retreated slightly 
westward and aligned along the Texas-New Mexico border. The observed double-boundary 
structure (Fig. 4) and tight Td gradients were well predicted but the model dryline in the Texas 
Panhandle area was located too far to the west. This was likely caused by the MM5 over-
prediction of southerly flow which served to advect the moister air mass further northwestward 
into the Texas Panhandle. Clearly, surface convergence played a key role in the intensification 
and maintenance of the sharp Td gradients. The model convective precipitation rates revealed 
that there was no organized activity before 18 h, and that convection in Oklahoma and West 
Texas along the eastern edge of the dryline took place from 18 h to 30 h. Fig. 6 depicts the model 
convective precipitation rates at 24 and 36 h, with the activity reaching its peak intensity around 
24 h and tailing off over the next 12 h. Note that no convection is present near the dryline at 36 
h. Also, the major activities are found quite far away from the dryline in Central and East Texas, 
where severe weather was reported.  
 
Figure 7 shows the 36-h simulated surface winds and Td in E1. The large differences in the wind 
and Td fields between CNTR and E1 occurred in West Texas and eastern New Mexico, e.g., the 
location and orientation of the dryline and confluence zone. The model convective rainfall rates 
in CNTR and E1 were rather similar before 24 h, but they differed from each other quite a bit in 
the last 12 h. E1 produced bands of heavy convection (not shown) further to the west of the area 
of major activities in CNTR. Figs 8 and 9 show the 36-h simulated accumulated precipitation in 
CNTR and E1, respectively. Some direct influences of the MM5 eastern grid boundary on the 
model accumulated precipitation fields are noted, although the general patterns compare quite 
well with those observed and shown  in Fig. 10. In CNTR, an area of over 10 cm of rainfall is 
shown in North Texas, while in E1 a similar maximum is centered further to the south. The basic 
features, in particular the location, of heavy rainfall (> 2.5 cm) in the middle of Texas in E1 
appear to be in better agreement with the observations than in CNTR.  
 
Although the nudging of ACARS data ends at 24 h, its impact on the MM5 simulations persists 
in the next 12 h. Fig. 11 shows the difference (CNTR-E1) maps of surface vector winds (∆V), 
surface temperatures (∆T), and specific humidity (∆q) at 24 and 36 h. Note that no q data were 
used in nudging. Clearly, ∆V is compounded by latent heating. The locations of the ∆V, ∆T, and 
∆q centers are well correlated with each other at 24 h but not as well at 36 h. At 24 h, over 15 
m/s ∆V are found in many locations, and ∆T and ∆q also show several maximum and minimum 
centers with values as large as 6oC and 7 gm/kg respectively scattering across Texas and 
Oklahoma. Twelve hours later there still exist areas of large ∆V. However, we see clear fading of 
∆T in the 12-h period. At 36 h, the most pronounced ∆q in the vicinities of the Kansas-Oklahoma 
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as well as Texas-New Mexico state lines is due to the discrepancy in the predicted location and 
orientation of the dryline.   
 
Figure 12 shows (CNTR-E1) and (E1-CNTR) in the 36-h accumulated precipitation (∆P). The 
CNTR run produced a broad area of much higher rainfall in North Texas with the largest ∆P over 
5 inches and several smaller areas of positive ∆P further south. E1 produced much heavier 
rainfall in the central section of Texas. The observed patterns in Fig. 10 appear to support the 
high positive (E1-CNTR) ∆P in Texas as well as the area of positive ∆P at the Oklahoma-Texas 
border. The bulk of ∆P was caused by large rainfall differences between the two runs in the last 
12 h, suggesting significant influences of ACARS data on the model precipitation processes 
hours after ending FDDA.   
   
Figure 13 summarizes the time sequences of means and standard deviations (SDs) of (CNTR-E1) 
differences in the surface winds (∆u and ∆v) and ∆T. Some oscillations are noted in the mean 
values between 12 and 36 h. The SDs of ∆u, ∆v, and ∆T increase rapidly as FDDA starts at 12 h, 
but the SD of ∆q (not shown) increases gradually before 20 h because the ACARS profiles do 
not include q. The SDs of ∆u and ∆v reach their highest values around 30 h a few hours after the 
termination of FDDA, while SD of ∆T reaches its  maximum at 24 h. At the end of simulations, 
all SDs remain quite high and close to those at 24 h. Fig. 14 shows the similar means and SDs at 
a middle level. Again, the SDs remain high at the end of simulation. For both levels, the 
amplitudes of oscillations are not particularly large and show very little temporal variations. 
There are no coherent relationships in the frequency and phase between the individual variables 
as well as between the two levels. FDDA in this case resulted in a warmer and dryer model 
surface, but a cooler and moister model mid-troposphere. 
        
Figure 15 shows the means and SDs of forecast errors (observations-model) at the model levels 
for CNTR. The mean curves suggest that the MM5 CNTR run over-predicted u (except near the 
surface), but generally under-predicted v. The SD curves suggest that for u and v MM5 
performed better below Level 6.  The MM5 CNTR run performed best for T in the upper layers 
above Level 14, and worst for T near the surface (where the model was too cold). The 36-h root 
mean square (RMS) errors of u, v, and T have about the same size as those of 24-h values for 
typical regional model forecasts summarized by Anthes (1983). There are very minor differences 
in the means and SDs of forecast error between CNTR and E1. FDDA clearly alters the model 
wind, T, and precipitation forecasting, but it is difficult to identify such impact in terms of the 
more common forecast error statistical measures. 
 
3.2 E2, E3, and E4 
 
These three experiments are designed to examine how MM5 FDDA responds to changes in the 
magnitude of nudging parameters and radii of influence. Inter-comparisons based on the means 
and SDs of forecast errors show minimal differences between CNTR and the individual runs. 
However, some interesting variations are noted in the model precipitation forecasts. The basic 
structure and magnitudes of (CNTR-E4) and (E4-CNTR) in the simulated 36-h accumulated 
rainfall strongly resemble those of (CNTR-E1) and (E1-CNTR) depicted in Fig. 12a and b, 
respectively. The similar departures of E2 and E3 from CNTR are summarized in Fig. 16. The 
general patterns of (CNTR-E1) bear some resemblance to those of (CNTR-E2) or (CNTR-E3). 
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However, (E2-CNTR) and (E3-CNTR) have a less organized configuration with many isolated 
centers and differ considerably from (E1-CNTR). As for rainfall prediction, the MM5 model 
appears to be less affected by the removal of proximate data in E4 than the reduction of the 
horizontal radius of influence in E2 or the nudging factor in E3. Also, all experiments except 
CNTR produced an area of heavy rainfall adjacent to the Texas-Oklahoma border as observed. 
  
4. Summary 
 
The study is designed to test the underlying hypothesis that high frequency mesoscale FDDA 
using the observational nudging method can significantly improve mesoscale NWP. The work 
was carried out based on MM5 real-data simulation experiments in conjunction with ACARS 
profile data. The severe weather event of 8-9 May 2005 occurring over Central Texas was 
selected for the experiments, which included a control run and several FDDA runs. The area 
means of model difference fields between the control run and individual FDDA runs showed 
some temporal oscillations with relatively small amplitudes suggesting that the model was only 
undergoing mild adjustments to the insertion of ACARS data. The corresponding standard 
deviations revealed lasting impact of the profile data on the MM5 forecasts throughout the entire 
model atmosphere 12 h after the termination of FDDA. The data distribution was not very 
uniform in the middle and lower layers. Some large changes (control minus FDDA) in the 
surface flow and temperatures were found far away from the areas where the data were 
concentrated. While ACARS caused substantial variations in precipitation and surface flow 
forecasting, the results suggest it was difficult to identify such impact, whether positive or 
negative, in terms of forecast statistics from a single case study. 
 
The model responses to data assimilation are likely to vary with weather scenarios and the size of 
data sets. Nevertheless, the experiments have shown that ACARS data has high potential to 
advance our expertise in short-term mesoscale modeling and supporting the need to rapidly and 
accurately adjust high-resolution meteorological model forecasts to near real-time observations. 
More case studies of diverse events (e.g., oscillation drylines, rainstorms, wind/dust storms) are 
desired, particularly those which occur in the vicinity of the West Texas Mesonet domain. This 
will enable us to carry out comprehensive model validation with the Mesonet tower T, wind, and 
rainfall observations. It will hopefully allow us to reveal the most likely areas for great 
improvement using the composite forecast statistics derived from a large number of diverse 
mesoscale weather events.  
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Fig. 1 MM5 model domain and terrain. The terrain contour interval is 200 m. 
 

 
(a)                                                                         (b)    
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Fig.2 ACARS observation sites, 12 UTC 8 to 00 UTC 9 May 2005. (a) upper layers centered at 
300 hPa, (b) middle layers centered at 500 hPa, and (c) lower layers centered at 700 hPa. 

 
(a) 
 

 
(b) 
 
Fig. 3 MM5 initial state: (a) surface vector winds (m/s) and Td (oC) and (b) 700 hPa vector 
winds. 
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    (a)                                                                           (b) 
Fig. 4 Observed surface conditions at 12 UTC 9 May. (a) vector winds (m/s) and (b) Td (oC) 
 

 
(a) 
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(b) 
 
Fig. 5 Simulated surface vector winds (m/s) and Td.(oC) at (a) 24 h and (b) 36 h for CNTR 
 
 

 
(a)                                                                              (b) 
 
 
Fig. 6 Simulated convective precipitation rate (mm) at (a) 24 h and (b) 36 h for CNTR 
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Fig. 7 36-h simulated surface vector winds (m/s) and Td (oC) for E1  
 

 
 
Fig. 8 Simulated 36-h accumulated precipitation (cm) for CNTR 
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Fig 9 Simulated 36-h accumulated precipitation (cm) for E1 
 

    
Fig. 10 Observed 24-h accumulated precipitation observed at 1200 UTC, 9 May 2005    
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       Vector wind (m/s)                                                T (oC) 

 
      q (gm/km) 
 
(a) 24 h 
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      Vector winds (m/s)                                                 T (oC) 

 
      q (gm/kg) 
 
(b) 
 
Fig 11 Simulated (CNTR-E1) surface vector wind, T, and q differences at (a) 24 h and (b) 36 h. 
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      (a)   CNTR-E1                                                        (b) E1-CNTR 
 
 
Fig. 12 Simulated 36-h accumulated precipitation differences (cm) 
  
 

 
(a) u (m/s)                                                                (b) v (m/s) 
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(c) T (oC) 
 
Fig. 13 Mean (Curves A) and standard deviation (Curves B) of (CNTR-E1) at the surface as a 
function of time (h) for (a) u, (b) v, and (c) T. 
 
 

 
(a)  u (m/s)                                                                (b) v (m/s) 
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(c) T (oC) 
 
Fig. 14 As in Fig. 13 but at σ = 0.525 (~500 hPa). 
 

 
(a) u (m/s)                                                               (b) v (m/s) 
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(c) T (oC) 

 
Fig. 15 Mean (Curves A) and standard deviation (Curves B) of (Observation-CNTR) difference 
fields at 36 h as a function of model levels. 
 
 
  

 
CNTR-E2                                                                    E2-CNTR 
 
(a)  
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       CNTR-E3                                                             E3-CNTR 
    (b) 
 
Fig. 16 Simulated 36-h accumulated precipitation differences (cm) for (a) CNTR-E2 and E2-
CNTR and (b) CNTR-E3 and E3-CNTR 
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