
1.  INTRODUCTION 
 
  As a result of the demand for high performance 
graphics capabilities driven by the computer 
video game industry, the processing 
performance of video cards is rapidly evolving. 
Recent trends in computing have shifted toward 
multi-core processors and programmable 
graphics processors equipped with highly 
parallel data paths for processing geometry and 
pixels.  Multi-core machines are now readily 
available with 2 cores, but machines with 4, 8, 
and even 16 or more cores are projected for the 
near future.  Data parallelism in modern 
graphics cards is also increasing with raw 
performance of graphics processing units 
(GPUs) surpassing performance of central 
processing units (CPUs).  While initially 
specialized for processing computer graphics, 
GPUs can be programmed for general-purpose 
computations.  As a result, GPUs have become 
useful computational tools providing inexpensive 
highly parallel data paths to accelerate a wide 
range of scientific and simulation applications. 
 
  One area of simulation that could greatly 
benefit from inexpensive parallelization is 
emergency response transport and dispersion 
modeling in urban areas. In a previous paper 
(Willemsen et al. 2007), we implemented a 
simple Lagrangian dispersion model based on 
the Quick Urban and Industrial Complex (QUIC) 
Dispersion Modeling System (Pardyjak and 
Brown 2001;Williams et al. 2002; Nelson et al. 
2006) on the GPU for a simple continuous point 
source release in a uniform flow. The GPU 
simulations outperformed the CPU simulations 
by nearly three orders of magnitude. For the 
present paper, we again utilize the QUIC 
dispersion modeling framework to extend our 
GPU simulations to an urbanized domain with 
explicitly resolved buildings. We compare GPU 
simulation results to the standard QUIC CPU 
results, highlight performance gains and discuss 
challenges associated with implementation of 

Lagrangian dispersion models onto the GPU. 
 
In addition to performance benefits associated 
with this approach, the methodology provides a 
natural mechanism for real-time visualization of 
particle dispersion.  Because the domain data 
are already loaded into the GPU memory, 
rendering these data to the screen after each 
simulation step is a fairly trivial process and 
affords a convenient means for visualizing the 
dispersion field. This is particularly important for 
virtual environment applications where a 
physical system must be integrated with a 
dispersion model running in near real-time for 
applications such as emergency response 
training exercises. In fact, the authors and 
colleagues are using the methodology 
developed here to model environmental flows in 
virtual environments (e.g., Hollerbach et al. 
2005.; Kirkman et al. 2006; Kulkarni et al. 2007). 
 
1.1 GPU SIMULATION BACKGROUND 
Recently, researchers have been investigating 
utilization of the computational power of the 
GPU to solve problems that are not associated 
with computer graphics or rendering. The GPU, 
and in particular, the pixel processing (or 
rasterization) component on the GPU, is a highly 
parallel stream processor capable of floating 
point computations (as of this writing only 32-
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Figure 1: Illustration contrasting a Lagrangian particle 
model’s advection calculation on a standard CPU and on a 
GPU. 



bit/single precision).  Pixel processing on 
graphics hardware has traditionally involved only 
the coloring of pixels on a monitor, but is now a 
highly programmable component in the stream 
processing architectures included with current 
graphics hardware.  These stream processors 
are often well suited for memory bound and 
compute bound applications in which the 
computations can be transformed into SIMD 
(single-instruction, multiple-data) stream 
computations to be executed on the graphics 
hardware.  The SIMD computations these 
stream processors are designed for provide data 
level parallelism and are the primary component 
used to parallelize our dispersion simulation. 
 
Current graphics hardware (such as the NVIDIA 
8000 series or the AMD/ATI R580), have up to 
128 parallel stream processors responsible for 
the calculations usually performed on vertices, 
geometry, and pixels to produce graphical 
output.  These processing elements can be 
programmed for SIMD operations and can 
operate in a highly parallel manner on large sets 
of data.  Examples of using a GPU’s stream 
processing functionality are numerous in the 
literature and include computing and applying 
FFT to images (Moreland & Angel 2003), 
numerically solving the Navier-Stokes equations 
(Scheidegger et al. 2005), solving multigrid 
problems (Bolz et al. 2003; Goodnight et al. 
2003), solving dense linear systems (Galoppo et 
al. 2005), and cloud dynamics (Harris et al. 
2003).  Simple particle simulations involving one 
million particles have been run at interactive 
frame rates using the GPU (Kipfer et al. 2004).  
The common point of these examples is that 
algorithm performance on the GPU can 
outperform the equivalent CPU computations. 
However, much effort generally goes into 
keeping data and computation on the graphics 
hardware (and hence off of the CPU) to 
maximize performance.  Our efforts build on 
these techniques and work towards creating a 
viable solution for real-time simulation and 
visualization of atmospheric flows. 
 
2. GPU SIMULATION METHODOLOGY 
2.1 GENERAL DISPERSION METHODOLOGY 
 
  Computing particle dispersion on the GPU 
requires that the simulation be constructed to fit 
within the constraints of the GPU architecture to 
take advantage of the highly parallel stream 
processing elements on the GPU. Program 
organization on the GPU is different from writing 

software for a CPU.  The two biggest differences 
between traditional CPU based programs and 
GPU programs are how the stream processors 
are utilized and how memory is managed. 
Figure 1 illustrates the stream processing 
parallelism in the GPU as compared with a 
single processor CPU.  A GPU-based particle 
dispersion simulation will perform the advection 
step on sets of particles simultaneously by 
utilizing the stream processors on the GPU, 
whereas on the CPU, only a single particle is 
advected at a time.  In the illustration, multiple 
particles’ positions are being update 
simultaneously on the GPU whereas in the CPU 
a single particle position is updated.  After 
completion of one simulation time step, all 
particles in the 2D array will have been 
advected.  Performing advection on the GPU 
requires that the advection computations or any 
other per-particle processing be coded into a 
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Figure 2: Illustration of the use of textures as data 
memory on the GPU. The rectangles shown are 2D 
textures that store particle velocity and position. The 
2D 4x4 textures shown each represent 16 particles. 
Simulations with more particles will have larger 2D 
textures representing position and orientation (e.g. 1M 
particles = 1000 x 1000 2D texture).  Each of the 
elements (e.g. the colored squares) of the 2D array 
can hold a 4 component vector, thus representing 4 
attributes of a particular particle.   



small program using a specialized graphics 
programming language.  Furthermore, all data 
representing the particle positions, wind fields, 
or other quantities must be transformed into 2D 
textures.  Textures are the primary memory 
structure on the GPU normally used to represent 
2D images for use in texturing geometry in video 
games.  However, in the context of general-
purpose computation, such as our dispersion 
simulation, textures become data sources.  Our 
primary data source is a 2D array of particle 
positions.  This 2D array represents all of the 
particles active within the simulation and is the 
data that the stream processors operate on to 
perform an advection step.  For instance, as 
illustrated in Figure 2, if we simulated a total of 
16 particles, the position and velocity texture 
data sources would be of size 4x4.  We achieve 
data-parallelism by encoding the particle 
advection computation as if it were pixels being 
colored or lit by the graphic processor.  Rather 
than computing the color of a pixel, the GPU 
advects a single particle.  Since there are 
upwards of 128 stream processors on modern 
GPUs, hundreds of particles can be operated on 
simultaneously.  As is the case with the CPU 
implementation of QUIC, there is no for loop that 
iterates over each particle.  We load the 
advection data as textures and a set of SIMD 
programs (often called shaders due to 
relationship to graphics) onto the graphics card 
memory.  We then instruct the GPU to execute 
the shader programs using the loaded data.  
This is analogous to having the GPU redraw a 
scene within a game, except nothing is drawn to 
the screen.  After the particles have been 
advected, we are immediately able to visualize 
them and show the results to the user.  Note that 
simulations without visualization increases 
performance. 
 
  Data sources such as the position and velocity 
arrays are directly encoded into a texture array.  
As shown in Fig. 3, 3D data sources, such as 
the wind field, are transformed from 3D to a 2D 
texture by splaying out the vertical slices of the 
wind field onto a single plane.  To locate the 
wind field velocity at or near a particle position, 
we use GPU texture lookup functions to lookup 
the velocity in the wind field texture using the 
particle’s position as the index.  Similar 
transformations and operations are performed to 
obtain the fluctuating wind field quantities.   
 
  Our application has been programmed using  
C++, OpenGL, and the OpenGL Shading 

Language.  The OpenGL  Shading Language is 
what is used to write the SIMD shader programs 
that run on the GPU and perform the advection 
steps.  Our application runs on Linux, OS X, and 
Windows machines equipped with a modern 3D 
graphics card, such as those made by NVIDIA 
or ATI.  The results reported below were run on 
a 2.4 Ghz Intel Core 2 Duo Processor with an 
NVIDIA GeForce 8800 GTS video card. 
 
2.2 METHODOLOGY FOR IMPLEMENTING 
BUILDINGS 
In our current implementation, we have added  
support for calculating particle reflection off 
buildings in the dispersion field.  Our simulations 
support multiple buildings.  Figure 4 shows a 
screen capture from our simulation with multiple 
buildings.  GPUs naturally support reflection 
calculations since reflection is an extremely 
common graphics operation.  The primary 
challenge with supporting building reflection is 
again an issue of encoding. We encode 
geometric descriptions (plane equations and 
extents of walls) of the buildings in the 
environment through use of a 2D texture.  A 
dispersion field celltype texture provides us with 
run-time information describing whether a 
particle is within a structure or in free space.  If a 
particles is in a structure, we can directly query 
the geometric information about the building and 

 
Figure 3: 3D data sources such as the wind and 
turbulence fields are flattened out into a 2D structure 
for loading into GPU texture memory. 

 
Figure 4: Graphical depiction of dispersion through 
multiple buildings in a realistic urban domain. 



perform the appropriate reflections. 
    

3.  THE DISPERSION MODELS 
 
The basic equations for both the QUIC GPU and 
CPU (Williams et al. 2002) models are shown 
below in Eqs. 1-5 (following Rodean, H.C., 
1996) where the flow has been decomposed into 
mean and fluctuating quantities (i.e., 
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In Eqs. 1-5, the subscript p indicates a particle’s 
velocity or position at the previous time step, 
and idξ  are uncorrelated, normally distributed 
variables with means of zero and standard 
deviations of 1. The 
tensor ( ) ( ) 1det/ −== ijijijij Adj τττλ  is the 
inverse matrix of the symmetric Reynolds stress 
tensor ijτ . To minimize differences between the 
two simulations, the stress tensor for the GPU 
was imported from the QUIC-Plume’s turbulence 
model. Future work will include implementing a 
new turbulence model onto the GPU model. Co 
is taken as 5.7 and the dissipation rate is given 
by khu /3

*=ε , where k is the von Karman 
constant. 
 
 
 
 

4.  DESCRIPTION OF THE TEST CASE 
 
The validation strategy used here is to compare 
the present GPU implementation of QUIC-Plume 
to the local-mixing CPU version of QUIC-Plume 
(v4.7).  For validation, an idealized continuous 
point source release upstream of an isolated 
cube was tested.  
 

 
Figure 5: Graphical depiction of the single building
dispersion simulation test case. 
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Figure 6: Dimensionless lateral concentration profile 
comparisons at (a) x = 9.75m, (b) x = 57.25m and x = 
85.75m. 

(a) 

(b)

(c)



As shown in Fig. 5, a point (spherical) source of 
radius 0.1m was placed 20m upstream along the 
centerline axis of a cubical building (H = 10m) at 
x = 5m, y = 25m and z = 3m. The domain used 
for the test case was 100mx50mx20m in x, y 
and z directions respectively.  
 
The velocity field for the dispersion calculations 
was generated using QUIC-URB. In QUIC-URB, 
the inlet/intial velocity profile was specified to be 
logarithmic with a reference velocity of 3ms-1 at 
a height of 10m. The roughness length was set 
to 0.1m. For this test case, 50,000 particles were 
released from the point source over the duration 
of 1000 seconds. The averaging time for the 
concentration estimation was 1000 seconds.  
 
5.  RESULTS AND DISCUSSION 
 
5.1 Comparison of Results 
 
Figure 6a shows a lateral concentration profile 
upwind of the building, at x = 9.75m and z = 
2.5m above the ground. The GPU lateral 
concentration profile matches the CPU 
generated profile fairly well at this height. A peak 
concentration is seen near the source location 
(at y = 25m) in both GPU and QUIC produced 
results. 
 
Figure 6b shows a lateral concentration profile, 
downwind of the building, at x = 57.25m and z = 
2.5m above the ground. The peak concentration 
is near to the center of the building (y=25m) in 
line with the source location. The two counter-
rotating vortices behind the building entrain the 
particles. The resulting concentration peak is 
due to this entrainment of the particles behind 
the building. Two small concentration dips are 
observed near the edges of the building (y=20m 
and y=30m). The GPU produced concentration 
profile shows less lateral dispersion, but follows 
the QUIC produced profile quite well at this 
height. We believe that the lack of lateral 
dispersion can be attributed to the difference in 
model implementation. The standard CPU 
implementation of QUIC utilizes a rotated co-
ordinate system (Williams et al. 2004) which is 
not implemented in the current GPU model. 
 
Figure 6c shows a lateral concentration profile, 
downwind of the building at x = 85.75m and z = 
2.5m above the ground. The peak concentration 
is near to the center of the building (y = 25m) 
and in line with the source location. The GPU 
produced results match the CPU results well 

except for some small differences. These 
differences are due to the different random 
seeds used for generating random number 
sequences and the difference between the GPU 
and QUIC implementation. 
 
Figure 7 shows vertical concentration profiles at 
two streamwise locations downwind of the 
building: at x=57.25 and y=24.01m (Fig 6a), and 
at x = 85.75m and y = 24.01m (Fig 6b). The 
concentration profiles show that GPU and QUIC 
produce quite similar results except for few 
differences. As described earlier, these 
differences can be attributed to the different 
implementations of the models.  
 
5.2 GPU Performance Evaluation 
 
For this work, the performance of the single 
processor CPU QUIC-Plume was compared to 
the GPU implementation for flow around a single 
building. The test case was an instantaneous 
release of N particles upwind of the buildings 
using the same geometry and conditions 
discussed in section 4.  The particles were then 
advected for 1000 times steps. Figure 8 shows 
the average time required to advect N particles 
during the 1000 time step simulation. The GPU 
shows over an order of magnitude speed up 
over the CPU simulations. In fact for the 
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Figure 7: Dimensionless vertical concentration profile 
comparisons near the domain centerline at (a) x = 
9.75m, (b) x = 57.25m and x = 85.75m. 
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simulations shown the CPU was 180 times 
faster than the CPU. This speed up is not as 
great as the increases reported by Willemsen et 
al. (2007) for dispersion in a uniform flow without 
reflection. Those simulations showed the GPU 
to be up to about 250 times faster than the CPU. 
Apparently, the additional overhead associated 
with additional turbulence texture storage and 
computations along with reflection calculations 
results in a performance penalty of about an 
order of magnitude.  
 
 
 
5.3 Summary 
Programming the GPU is currently a non-trivial 
task, but does provide increased performance 
over CPU implementations.  Moreover, we are 
easily able to visualize the results of our 
simulations in real-time.  Programming GPUs is 
likely to become easier as higher level 
languages are developed to access the graphics 
hardware.  Graphics card manufacturers, such 
as NVIDIA, are developing additional tools to 
help program these cards using C APIs to 
access the hardware.  As part of our continued 
work we are now investigating how NVIDIA’s 
CUDA (Compute Unified Device Architecture) 
framework might compare in performance and 
functionality to our current implementation.  For 
our future work, we plan to optimize our system 
for increased functionality, including support for 
generalized building structures, greater than 10 
million particles, and multi-GPU configurations.  
Current GPUs limit a single 2D texture size to a 
maximum of 4096x4096 elements.  This places 
a direct limit on the number of particles we can 
simulate or domain size we can handle in our 

simulations.  To get around this memory 
limitation, we will need to adopt a strategy for 
decomposing the total number of particles into 
smaller sets of 2D textures (of size 4096x4096), 
thus advecting up to 16M particles at a time by 
iterating over the smaller sets.  Multi-GPU 
arrangements may help with speeding up the 
advection of an increased numbers of particles 
since the work could be spread across the set of 
GPUs. 
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one time step. 



IEEE 9th International Conference on 
Rehabilitation Robotics, 28 June-1 July 2005, 
2005, Chicago, IL, 522-525. 
 
Kipfer, P., M. Sega & R. Westermann, 2004: 
Uberflow: a gpu-based particle engine. In 
Proceedings of the ACM siggraph/eurographics 
conference on graphics hardware, 115-122. 
 
Kirkman, R., M. Deaver, E. Pardyjak & M. 
Metzger, 2007: Sensitivity Analysis of a Three-
Dimensional Wind Tunnel Design, 2006 ASME 
Joint U.S.-European Fluids Engineering 
Summer Meeting, FEDSM 2006, July 17-20, 
Miami, FL, pp. 10. 
 
Kulkarni, S.D., M.A. Minor, M.W. Deaver & E.R. 
Pardyjak, 2007: Output feedback control of wind 
display in a virtual environment, Proc. IEEE Intl. 
Conf. Robotics and Automation, Rome, Italy, 
April 10-14, 2007. 
 
Moreland, K. & E. Angel, 2003: The FFT on a 
GPU. In Proceedings of ACM 
SIGGRAPH/EUROGRAPHICS Workshop on 
Graphics hardware, 112–119. 
 
Nelson, M.A., B. Addepalli, D. Boswell, M.J. 
Brown, 2006: The QUIC v. 4.5 Start Guide. LA-
UR-07-2799. 
 
Pardyjak, E.R. & M.J. Brown, 2001: Evaluation 
of a fast-response urban wind model–
comparison to single-building wind-tunnel data. 
in Proceedings of the 2001 International 
Symposium on Environmental Hydraulics. 
Tempe, AZ. 
 
Pardyjak, E.R. & M. Brown, 2002: Fast response 
modeling of a two building urban street canyon, 
4th AMS Symp. Urban Env., Norfolk, VA. 
 
Rodean, H.C., 1996: Stochastic Lagrangian 
models of turbulent diffusion, The American 
Meteorological Society, Boston, MA, pp. 82. 
 
Scheidegger, C., Comba, J., & Cunha, R.,: 
Practical CFD Simulations on the GPU using 
SMAC. Computer Graphics Forum, 24 (4), 715–
728. 
 
Willemsen, P., A. Norgren, B. Singh and E.R. 
Pardyjak, 2007: Development of a new 
methodology for improving urban fast response 
Lagrangian dispersion simulation via parallelism 
on the graphics processing unit. Proceedings of 

the 11th International Conference on 
Harmonisation within Atmospheric Dispersion 
Modelling for Regulatory Purposes, Queen’s 
College, University of Cambridge, United 
Kingdom, July 2-5, 2007. 
 
Williams, M.D., M.J. Brown & E.R. Pardyjak, 
2002: Development and testing of a dispersion 
model for flow around buildings. in 4th AMS 
Symp. Urban Env. Norfolk, VA. 
 
Williams, M.D., M.J. Brown, B. Singh & D. 
Boswell, 2004: QUIC-Plume Theory Guide. 
LANL Report: LA-UR-04-0561. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


