
1. INTRODUCTION

 As a result of the demand for high performance
graphics capabilities driven by the computer
video game industry, the processing
performance of video cards is rapidly evolving.
Recent trends in computing have shifted toward
multi-core processors and programmable
graphics processors equipped with highly
parallel data paths for processing geometry and
pixels. Multi-core machines are now readily
available with 2 cores, but machines with 4, 8,
and even 16 or more cores are projected for the
near future. Data parallelism in modern
graphics cards is also increasing with raw
performance of graphics processing units
(GPUs) surpassing performance of central
processing units (CPUs). While initially
specialized for processing computer graphics,
GPUs can be programmed for general-purpose
computations. As a result, GPUs have become
useful computational tools providing inexpensive
highly parallel data paths to accelerate a wide
range of scientific and simulation applications.

 One area of simulation that could greatly
benefit from inexpensive parallelization is
emergency response transport and dispersion
modeling in urban areas. In a previous paper
(Willemsen et al. 2007), we implemented a
simple Lagrangian dispersion model based on
the Quick Urban and Industrial Complex (QUIC)
Dispersion Modeling System (Pardyjak and
Brown 2001;Williams et al. 2002; Nelson et al.
2006) on the GPU for a simple continuous point
source release in a uniform flow. The GPU
simulations outperformed the CPU simulations
by nearly three orders of magnitude. For the
present paper, we again utilize the QUIC
dispersion modeling framework to extend our
GPU simulations to an urbanized domain with
explicitly resolved buildings. We compare GPU
simulation results to the standard QUIC CPU
results, highlight performance gains and discuss
challenges associated with implementation of

Lagrangian dispersion models onto the GPU.

In addition to performance benefits associated
with this approach, the methodology provides a
natural mechanism for real-time visualization of
particle dispersion. Because the domain data
are already loaded into the GPU memory,
rendering these data to the screen after each
simulation step is a fairly trivial process and
affords a convenient means for visualizing the
dispersion field. This is particularly important for
virtual environment applications where a
physical system must be integrated with a
dispersion model running in near real-time for
applications such as emergency response
training exercises. In fact, the authors and
colleagues are using the methodology
developed here to model environmental flows in
virtual environments (e.g., Hollerbach et al.
2005.; Kirkman et al. 2006; Kulkarni et al. 2007).

1.1 GPU SIMULATION BACKGROUND
Recently, researchers have been investigating
utilization of the computational power of the
GPU to solve problems that are not associated
with computer graphics or rendering. The GPU,
and in particular, the pixel processing (or
rasterization) component on the GPU, is a highly
parallel stream processor capable of floating
point computations (as of this writing only 32-

Using Video Gaming Technology to Achieve Low-cost Speed up of Emergency Response
Urban Dispersion Simulations

E.R. Pardyjak1,*, B. Singh1, A. Norgren2 and P. Willemsen2

1University of Utah, 2University of Minnesota Duluth

14.2

* Corresponding author address:
Eric R. Pardyjak, University of Utah, Department
of Mechanical Engineering, Salt Lake City, UT
84112, pardyjak@eng.utah.edu

GPU

CPU

Particles processed in
parallel

Particles processed
serially

Particles represented
 in 2D Texture

Processing

Processing

Next in line

Next in line

Advection Calculation
Particles in 3D Space

Updated

Updated

z

y

z

y

Fig. 2a

Fig. 2b

Particles represented
 in 2D Array

Figure 1: Illustration contrasting a Lagrangian particle
model’s advection calculation on a standard CPU and on a
GPU.

bit/single precision). Pixel processing on
graphics hardware has traditionally involved only
the coloring of pixels on a monitor, but is now a
highly programmable component in the stream
processing architectures included with current
graphics hardware. These stream processors
are often well suited for memory bound and
compute bound applications in which the
computations can be transformed into SIMD
(single-instruction, multiple-data) stream
computations to be executed on the graphics
hardware. The SIMD computations these
stream processors are designed for provide data
level parallelism and are the primary component
used to parallelize our dispersion simulation.

Current graphics hardware (such as the NVIDIA
8000 series or the AMD/ATI R580), have up to
128 parallel stream processors responsible for
the calculations usually performed on vertices,
geometry, and pixels to produce graphical
output. These processing elements can be
programmed for SIMD operations and can
operate in a highly parallel manner on large sets
of data. Examples of using a GPU’s stream
processing functionality are numerous in the
literature and include computing and applying
FFT to images (Moreland & Angel 2003),
numerically solving the Navier-Stokes equations
(Scheidegger et al. 2005), solving multigrid
problems (Bolz et al. 2003; Goodnight et al.
2003), solving dense linear systems (Galoppo et
al. 2005), and cloud dynamics (Harris et al.
2003). Simple particle simulations involving one
million particles have been run at interactive
frame rates using the GPU (Kipfer et al. 2004).
The common point of these examples is that
algorithm performance on the GPU can
outperform the equivalent CPU computations.
However, much effort generally goes into
keeping data and computation on the graphics
hardware (and hence off of the CPU) to
maximize performance. Our efforts build on
these techniques and work towards creating a
viable solution for real-time simulation and
visualization of atmospheric flows.

2. GPU SIMULATION METHODOLOGY
2.1 GENERAL DISPERSION METHODOLOGY

 Computing particle dispersion on the GPU
requires that the simulation be constructed to fit
within the constraints of the GPU architecture to
take advantage of the highly parallel stream
processing elements on the GPU. Program
organization on the GPU is different from writing

software for a CPU. The two biggest differences
between traditional CPU based programs and
GPU programs are how the stream processors
are utilized and how memory is managed.
Figure 1 illustrates the stream processing
parallelism in the GPU as compared with a
single processor CPU. A GPU-based particle
dispersion simulation will perform the advection
step on sets of particles simultaneously by
utilizing the stream processors on the GPU,
whereas on the CPU, only a single particle is
advected at a time. In the illustration, multiple
particles’ positions are being update
simultaneously on the GPU whereas in the CPU
a single particle position is updated. After
completion of one simulation time step, all
particles in the 2D array will have been
advected. Performing advection on the GPU
requires that the advection computations or any
other per-particle processing be coded into a

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

0

1
2

3

4
5

5

6

6
7

7

8

8

8

8

9

9
10

11

12

12

12

12

13

13

14
15

Figure 2: Illustration of the use of textures as data
memory on the GPU. The rectangles shown are 2D
textures that store particle velocity and position. The
2D 4x4 textures shown each represent 16 particles.
Simulations with more particles will have larger 2D
textures representing position and orientation (e.g. 1M
particles = 1000 x 1000 2D texture). Each of the
elements (e.g. the colored squares) of the 2D array
can hold a 4 component vector, thus representing 4
attributes of a particular particle.

small program using a specialized graphics
programming language. Furthermore, all data
representing the particle positions, wind fields,
or other quantities must be transformed into 2D
textures. Textures are the primary memory
structure on the GPU normally used to represent
2D images for use in texturing geometry in video
games. However, in the context of general-
purpose computation, such as our dispersion
simulation, textures become data sources. Our
primary data source is a 2D array of particle
positions. This 2D array represents all of the
particles active within the simulation and is the
data that the stream processors operate on to
perform an advection step. For instance, as
illustrated in Figure 2, if we simulated a total of
16 particles, the position and velocity texture
data sources would be of size 4x4. We achieve
data-parallelism by encoding the particle
advection computation as if it were pixels being
colored or lit by the graphic processor. Rather
than computing the color of a pixel, the GPU
advects a single particle. Since there are
upwards of 128 stream processors on modern
GPUs, hundreds of particles can be operated on
simultaneously. As is the case with the CPU
implementation of QUIC, there is no for loop that
iterates over each particle. We load the
advection data as textures and a set of SIMD
programs (often called shaders due to
relationship to graphics) onto the graphics card
memory. We then instruct the GPU to execute
the shader programs using the loaded data.
This is analogous to having the GPU redraw a
scene within a game, except nothing is drawn to
the screen. After the particles have been
advected, we are immediately able to visualize
them and show the results to the user. Note that
simulations without visualization increases
performance.

 Data sources such as the position and velocity
arrays are directly encoded into a texture array.
As shown in Fig. 3, 3D data sources, such as
the wind field, are transformed from 3D to a 2D
texture by splaying out the vertical slices of the
wind field onto a single plane. To locate the
wind field velocity at or near a particle position,
we use GPU texture lookup functions to lookup
the velocity in the wind field texture using the
particle’s position as the index. Similar
transformations and operations are performed to
obtain the fluctuating wind field quantities.

 Our application has been programmed using
C++, OpenGL, and the OpenGL Shading

Language. The OpenGL Shading Language is
what is used to write the SIMD shader programs
that run on the GPU and perform the advection
steps. Our application runs on Linux, OS X, and
Windows machines equipped with a modern 3D
graphics card, such as those made by NVIDIA
or ATI. The results reported below were run on
a 2.4 Ghz Intel Core 2 Duo Processor with an
NVIDIA GeForce 8800 GTS video card.

2.2 METHODOLOGY FOR IMPLEMENTING
BUILDINGS
In our current implementation, we have added
support for calculating particle reflection off
buildings in the dispersion field. Our simulations
support multiple buildings. Figure 4 shows a
screen capture from our simulation with multiple
buildings. GPUs naturally support reflection
calculations since reflection is an extremely
common graphics operation. The primary
challenge with supporting building reflection is
again an issue of encoding. We encode
geometric descriptions (plane equations and
extents of walls) of the buildings in the
environment through use of a 2D texture. A
dispersion field celltype texture provides us with
run-time information describing whether a
particle is within a structure or in free space. If a
particles is in a structure, we can directly query
the geometric information about the building and

Figure 3: 3D data sources such as the wind and
turbulence fields are flattened out into a 2D structure
for loading into GPU texture memory.

Figure 4: Graphical depiction of dispersion through
multiple buildings in a realistic urban domain.

perform the appropriate reflections.

3. THE DISPERSION MODELS

The basic equations for both the QUIC GPU and
CPU (Williams et al. 2002) models are shown
below in Eqs. 1-5 (following Rodean, H.C.,
1996) where the flow has been decomposed into
mean and fluctuating quantities (i.e.,

iii uUu '+=).

)1(
2

'' ,
, t

uu
tUxx iip

iipi Δ
+

+Δ+=

)2(''' , iipi duuu +=

()
())3(

''
2

'

1
2/1

3,131,111

ξε

λλ
ε

ddtC

dtuu
C

du

o

pp
o

+

+−=

() ())4('
2

' 2
2/1

2,222 ξελ
ε

ddtCdtu
C

du op
o +−=

()
())5(

''
2

'

3
2/1

3,331,133

ξε

λλ
ε

ddtC

dtuu
C

du

o

pp
o

+

+−=

In Eqs. 1-5, the subscript p indicates a particle’s
velocity or position at the previous time step,
and idξ are uncorrelated, normally distributed
variables with means of zero and standard
deviations of 1. The
tensor () () 1det/ −== ijijijij Adj τττλ is the
inverse matrix of the symmetric Reynolds stress
tensor ijτ . To minimize differences between the
two simulations, the stress tensor for the GPU
was imported from the QUIC-Plume’s turbulence
model. Future work will include implementing a
new turbulence model onto the GPU model. Co
is taken as 5.7 and the dissipation rate is given
by khu /3

*=ε , where k is the von Karman
constant.

4. DESCRIPTION OF THE TEST CASE

The validation strategy used here is to compare
the present GPU implementation of QUIC-Plume
to the local-mixing CPU version of QUIC-Plume
(v4.7). For validation, an idealized continuous
point source release upstream of an isolated
cube was tested.

Figure 5: Graphical depiction of the single building
dispersion simulation test case.

0 1 2 3 4 5
0

5

10

15

20

25

30

35

Y / H

C
 *

x = 9.75m , z = 2.5m

QUIC−Plume
GPU

0 1 2 3 4 5
0

0.5

1

1.5

Y / H

C
 *

x = 57.25m , z = 2.5m

QUIC−Plume
GPU

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y / H

C
 *

x = 85.75m , z = 2.5m

QUIC−Plume
GPU

Figure 6: Dimensionless lateral concentration profile
comparisons at (a) x = 9.75m, (b) x = 57.25m and x =
85.75m.

(a)

(b)

(c)

As shown in Fig. 5, a point (spherical) source of
radius 0.1m was placed 20m upstream along the
centerline axis of a cubical building (H = 10m) at
x = 5m, y = 25m and z = 3m. The domain used
for the test case was 100mx50mx20m in x, y
and z directions respectively.

The velocity field for the dispersion calculations
was generated using QUIC-URB. In QUIC-URB,
the inlet/intial velocity profile was specified to be
logarithmic with a reference velocity of 3ms-1 at
a height of 10m. The roughness length was set
to 0.1m. For this test case, 50,000 particles were
released from the point source over the duration
of 1000 seconds. The averaging time for the
concentration estimation was 1000 seconds.

5. RESULTS AND DISCUSSION

5.1 Comparison of Results

Figure 6a shows a lateral concentration profile
upwind of the building, at x = 9.75m and z =
2.5m above the ground. The GPU lateral
concentration profile matches the CPU
generated profile fairly well at this height. A peak
concentration is seen near the source location
(at y = 25m) in both GPU and QUIC produced
results.

Figure 6b shows a lateral concentration profile,
downwind of the building, at x = 57.25m and z =
2.5m above the ground. The peak concentration
is near to the center of the building (y=25m) in
line with the source location. The two counter-
rotating vortices behind the building entrain the
particles. The resulting concentration peak is
due to this entrainment of the particles behind
the building. Two small concentration dips are
observed near the edges of the building (y=20m
and y=30m). The GPU produced concentration
profile shows less lateral dispersion, but follows
the QUIC produced profile quite well at this
height. We believe that the lack of lateral
dispersion can be attributed to the difference in
model implementation. The standard CPU
implementation of QUIC utilizes a rotated co-
ordinate system (Williams et al. 2004) which is
not implemented in the current GPU model.

Figure 6c shows a lateral concentration profile,
downwind of the building at x = 85.75m and z =
2.5m above the ground. The peak concentration
is near to the center of the building (y = 25m)
and in line with the source location. The GPU
produced results match the CPU results well

except for some small differences. These
differences are due to the different random
seeds used for generating random number
sequences and the difference between the GPU
and QUIC implementation.

Figure 7 shows vertical concentration profiles at
two streamwise locations downwind of the
building: at x=57.25 and y=24.01m (Fig 6a), and
at x = 85.75m and y = 24.01m (Fig 6b). The
concentration profiles show that GPU and QUIC
produce quite similar results except for few
differences. As described earlier, these
differences can be attributed to the different
implementations of the models.

5.2 GPU Performance Evaluation

For this work, the performance of the single
processor CPU QUIC-Plume was compared to
the GPU implementation for flow around a single
building. The test case was an instantaneous
release of N particles upwind of the buildings
using the same geometry and conditions
discussed in section 4. The particles were then
advected for 1000 times steps. Figure 8 shows
the average time required to advect N particles
during the 1000 time step simulation. The GPU
shows over an order of magnitude speed up
over the CPU simulations. In fact for the

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C *

 Z
 /

H

x = 57.25m , y = 24.01m

QUIC−Plume
GPU

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C *

 Z
 /

H

x = 85.75m , y = 24.01m

QUIC−Plume
GPU

Figure 7: Dimensionless vertical concentration profile
comparisons near the domain centerline at (a) x =
9.75m, (b) x = 57.25m and x = 85.75m.

(a)

(b)

simulations shown the CPU was 180 times
faster than the CPU. This speed up is not as
great as the increases reported by Willemsen et
al. (2007) for dispersion in a uniform flow without
reflection. Those simulations showed the GPU
to be up to about 250 times faster than the CPU.
Apparently, the additional overhead associated
with additional turbulence texture storage and
computations along with reflection calculations
results in a performance penalty of about an
order of magnitude.

5.3 Summary
Programming the GPU is currently a non-trivial
task, but does provide increased performance
over CPU implementations. Moreover, we are
easily able to visualize the results of our
simulations in real-time. Programming GPUs is
likely to become easier as higher level
languages are developed to access the graphics
hardware. Graphics card manufacturers, such
as NVIDIA, are developing additional tools to
help program these cards using C APIs to
access the hardware. As part of our continued
work we are now investigating how NVIDIA’s
CUDA (Compute Unified Device Architecture)
framework might compare in performance and
functionality to our current implementation. For
our future work, we plan to optimize our system
for increased functionality, including support for
generalized building structures, greater than 10
million particles, and multi-GPU configurations.
Current GPUs limit a single 2D texture size to a
maximum of 4096x4096 elements. This places
a direct limit on the number of particles we can
simulate or domain size we can handle in our

simulations. To get around this memory
limitation, we will need to adopt a strategy for
decomposing the total number of particles into
smaller sets of 2D textures (of size 4096x4096),
thus advecting up to 16M particles at a time by
iterating over the smaller sets. Multi-GPU
arrangements may help with speeding up the
advection of an increased numbers of particles
since the work could be spread across the set of
GPUs.

6. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the financial
support of the National Science Foundation
(grant IIS–0428856) and Department of
Homeland Security. The authors also wish to
thank Andrew Waidler for his contribution to the
CUDA implementation.

7. REFERENCES

Bolz, J., I. Farmer,E. Grinspun & P. Schroder,
2003: Sparse matrix solvers on the GPU:
Conjugate gradients and multigrid. ACM
Computer Graphics (SIGGRAPH 2003), 917–
924.

Galoppo, N., N.K. Govindaraju, M. Henson & D.
Manocha, 2005: Lu-gpu: Efficient algorithms for
solving dense linear systems on graphics
hardware. In Proceedings of the 2005
ACM/IEEE conference on supercomputing, 1–
12.

Goodnight, N., Woolley, C., Lewin, G., Luebke,
D., & Humphreys, G., 2003. A multigrid solver
for boundary value problems using
programmable graphics hardware. In
Proceedings of the ACM siggraph/eurographics
conference on graphics hardware, 102–111.

Hansen, B., Singh, B., Brown, M.J. & Pardyjak,
E.R., 2007. Evaluation of the QUIC-URB fast-
response urban wind model for an idealized
cubic building array, to be submitted to J. Wind
Eng. Ind. Aero. 2007

Harris, M.J., W.V.I. Baxter, T. Scheuermann, &
A. Lastra, 2003: Simulation of cloud dynamics
on graphics hardware. In Proceedings of the
ACM siggraph/eurographics conference on
graphics hardware, 92–101.

Hollerbach, J., D. Grow, & C. Parker, 2005:
Developments in locomotion interfaces, 2005

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

100 10000 1000000 100000000
Number of Particles

Ti
m

e
pe

r A
dv

ec
tio

n
St

ep
 (s

ec
)

CPU One Building
GPU One Building

Figure 7: Average time taken to advect N particles in
one time step.

IEEE 9th International Conference on
Rehabilitation Robotics, 28 June-1 July 2005,
2005, Chicago, IL, 522-525.

Kipfer, P., M. Sega & R. Westermann, 2004:
Uberflow: a gpu-based particle engine. In
Proceedings of the ACM siggraph/eurographics
conference on graphics hardware, 115-122.

Kirkman, R., M. Deaver, E. Pardyjak & M.
Metzger, 2007: Sensitivity Analysis of a Three-
Dimensional Wind Tunnel Design, 2006 ASME
Joint U.S.-European Fluids Engineering
Summer Meeting, FEDSM 2006, July 17-20,
Miami, FL, pp. 10.

Kulkarni, S.D., M.A. Minor, M.W. Deaver & E.R.
Pardyjak, 2007: Output feedback control of wind
display in a virtual environment, Proc. IEEE Intl.
Conf. Robotics and Automation, Rome, Italy,
April 10-14, 2007.

Moreland, K. & E. Angel, 2003: The FFT on a
GPU. In Proceedings of ACM
SIGGRAPH/EUROGRAPHICS Workshop on
Graphics hardware, 112–119.

Nelson, M.A., B. Addepalli, D. Boswell, M.J.
Brown, 2006: The QUIC v. 4.5 Start Guide. LA-
UR-07-2799.

Pardyjak, E.R. & M.J. Brown, 2001: Evaluation
of a fast-response urban wind model–
comparison to single-building wind-tunnel data.
in Proceedings of the 2001 International
Symposium on Environmental Hydraulics.
Tempe, AZ.

Pardyjak, E.R. & M. Brown, 2002: Fast response
modeling of a two building urban street canyon,
4th AMS Symp. Urban Env., Norfolk, VA.

Rodean, H.C., 1996: Stochastic Lagrangian
models of turbulent diffusion, The American
Meteorological Society, Boston, MA, pp. 82.

Scheidegger, C., Comba, J., & Cunha, R.,:
Practical CFD Simulations on the GPU using
SMAC. Computer Graphics Forum, 24 (4), 715–
728.

Willemsen, P., A. Norgren, B. Singh and E.R.
Pardyjak, 2007: Development of a new
methodology for improving urban fast response
Lagrangian dispersion simulation via parallelism
on the graphics processing unit. Proceedings of

the 11th International Conference on
Harmonisation within Atmospheric Dispersion
Modelling for Regulatory Purposes, Queen’s
College, University of Cambridge, United
Kingdom, July 2-5, 2007.

Williams, M.D., M.J. Brown & E.R. Pardyjak,
2002: Development and testing of a dispersion
model for flow around buildings. in 4th AMS
Symp. Urban Env. Norfolk, VA.

Williams, M.D., M.J. Brown, B. Singh & D.
Boswell, 2004: QUIC-Plume Theory Guide.
LANL Report: LA-UR-04-0561.

