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1. INTRODUCTION 

Event reconstruction of chemical or biological (CB) 
agent dispersion into the atmosphere is an important 
topic in homeland security and environmental 
monitoring, and it constitutes an inverse problem. In 
event reconstruction, also referred to as source 
characterization or source inversion in different 
studies, the major goal is to characterize the source 
of a contaminant or CB agent dispersion event in 
terms of release location and amount by using 
information from a sensor network, which can be 
available in the form of time-averaged concentration 
and wind measurements from scattered locations. 
Early detection of the CB agents with quick and 
accurate reconstruction of the dispersion events is 
critical in organizing an emergency response. Once 
the dispersion event is characterized, forward 
projections can be performed to analyze the extent of 
exposure to the contamination. 

  Event reconstruction of atmospheric contaminant   
dispersion has received a growing interest in recent 
years.  Several studies have appeared in solving the 
problem with different methods. For instance, Keats 
et al. (2007) presented a Bayesian inference method 
for determining the source of a dispersion event 
within complex urban environments. A source-
receptor relationship was incorporated into the 
likelihood function by solving an adjoint equation for 
the scalar concentration, which was found to be 
efficient in decreasing the overall calculation time.  

Thomson et al. (2007) applied an inverse problem 
approach to locating a known gas source from 
measurements of gas concentration and wind data. A 
search algorithm with simulated annealing method 
was employed to find the source location and its 
strength. The simulated annealing approach helps 
prevent the search algorithm to converge onto a local 
minimum that might surround the global minimum.  

Allen and Haupt (2007) developed a source 
characterization method in which a forward dispersion 
model is coupled with a backward receptor model 
using a genetic algorithm. A second-order closure 
integrated puff model was used in the source 
characterization. The method was validated with both 
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synthetic and experimental field data. Allen et al. [4] 
extended this method by considering the wind 
direction as an unknown parameter. Instead of the 
puff model, a simple Gaussian plume model was 
considered in their study. 

Johannesson et al. (2004) presented dynamic 
Bayesian models using Monte Carlo methods for 
target tracking and atmospheric dispersion event 
reconstruction problems. Both the well established 
Markov chain Monte Carlo (MCMC) method and the 
sequential Monte Carlo method for dynamic problems 
are discussed in detail in their study. 

Chow et al. (2006) and Neumann et al. (2006) 
extended the Bayesian event reconstruction method 
of Johanneson et al. (2004) for neighborhood scale 
atmospheric dispersion events. Both computationally 
intensive building resolving computational fluid 
dynamics models, and computationally less intensive 
empirically based Gaussian puff models were 
adopted in these studies, respectively. The results 
have shown that the Bayesian methodology is 
efficient in delivering probabilistic answers to the 
event reconstruction problem. 

Depending on the complexity of the forward model, 
the Bayesian approach to inverse problems can be 
computationally intensive in terms of the overall 
execution time. In the event reconstruction problem, 
the dispersion models are typically executed for many 
times within the MCMC framework in order to sample 
from the posterior distribution. It should be noted that 
MCMC chains converge onto the source location 
quickly, but chains are actually executed longer in 
order to deliver results with uncertainty, which is 
important in emergency response operations. With 
simple fast-response dispersion models, the overall 
execution time for MCMC chains is less of a problem, 
but with high-fidelity models the issue can be a 
limiting factor in emergency response situations. To 
address this issue, Marzouk et al. (2007) 
reformulated the Bayesian approach to inverse 
problems by adopting polynomial chaos expansions 
to represent random variables. In their study, a 
transient diffusion problem was considered. The 
results have shown that significant gains in 
computational time can be obtained by adopting the 
new scheme over direct sampling. 

In what follows, a stochastic event reconstruction 
method is presented, extending the Bayesian 
inference framework described in Johannesson et al. 
(2004) and Chow et al. (2006). Particularly, a 
probability model is proposed to take into account 



 
 

both zero and non-zero concentration observations 
that can be available from a sensor network. The 
parameters in the probability model are calculated 
from prior distributions, resulting in a method free 
from tunable parameters. Simple fast-running 
Gaussian plume dispersion models are adopted as 
the forward model in the Bayesian inference method. 
The event reconstruction method is validated using 
data from a tracer dispersion experiment (Erik and 
Lyck, 2002). 

2. BAYESIAN FORMULATION 

The forward modeling problem can be defined as 
predicting the response of a system, using a physical 
theory (forward model) and system parameters. In the 
inverse modeling problem, an inference is made on 
the values of the system parameters based on 
observations on the system response (Tarantola, 
2005). Loosely speaking, inverse problems can be 
formulated as follows: 

        )(1 dm −≈ F ,                          (1)                

where d is a vector of observations, m is a vector of 
model parameters, and the operator F is the forward 
model that governs the system response. Inverse 
problems can be ill-conditioned, because small 
changes in d can lead to large changes in m. 
Depending on the nature of inverse problems; both 
deterministic and probabilistic approaches have been 
developed for solving them. Probabilistic approaches 
can be formulated within the context of Bayesian 
inference, which is pursued in the present study. 

The present event reconstruction problem requires 
estimating the model parameters (m) (e.g. release 
location, amount of material released, wind direction 
etc.) given the observed concentrations (d) from a 
sensor network. 

Bayes' theorem defines the posterior probability of a 
set of model parameters (m) given the observations 
(d) as follows (Gilks et al., 1996; Carlin et al., 1996): 
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where p(m|d) is the posterior probability density, 
L(d|m) is the   likelihood function, p(m) is the prior 
probability density, and p(d) is the marginal 
probability density. The posterior probability density 
given in Eq. (2) defines the conditional probability 
density of forward model parameters (m), given the 
observed data (d), Calculation of p(m|d) is central in 
Bayesian inference, and it can also be viewed as a 
solution to an inverse problem. 

Direct computation of the posterior density, using 
Bayes' theorem, necessitates the computation of the 
marginal probability density p(d), given in Eq. (2), 
which can be computationally intensive to the point of 
being impractical for most applications. A practical 
approach to estimate the posterior probability density 
is to perform MCMC sampling by noting the following 
(Metropolis et al., 1953; Gilks et al., 1996; Carlin et 
al., 1996) 

)()|()|( mmddm pLp ∝ .               (3) 

Within this framework, the observed data (d) enters 
the formulation only through the ratio of likelihood 
function.  

Specification of the likelihood function deserves 
attention, because it models how the observations 
are acquired. For instance, the sensor network 
cannot quantify the concentration of tracers below its 
threshold specification for detection, and registers a 
zero concentration value. Hence, a likelihood function 
is needed that accounts for zero sensor readings 
when in fact the actual concentration is non-zero. 

Let m be the model, Cm the predicted 
concentration, ξ the concentration measured by an 
ideal sensor, and d is the concentration observed by 
an actual sensor. It is assumed that the observations 
d are related to ξ as follows: 
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and ξ, given the model, has a lognormal distribution 
with density 
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In Eq. (4), it is assumed that the probability of not 
detecting a plume can be calculated based on the 
predicted concentration Cm, and at the threshold 
concentration Cth, the plume is detected with 
probability ½, from which α can be computed as 
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Then, the likelihood function can be calculated as 
follows: 
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where δd is the Dirac delta-function. Therefore the 
likelihood function can be written as: 
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In emergency response situations, the overall run-
time for delivering answers is an important factor. 
Hence, fast running Gaussian plume dispersion 
models are adopted as the forward model to compute 
Cm. A Gaussian plume dispersion model for uniform 
steady wind conditions can be written as follows 
(Panofsky and Dutton, 1984): 
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where Cm is the concentration at a particular location, 
Q is the release rate, U is the mean wind speed, Hr is 
the height of the release, x is the distance along the 
wind, y is the distance along the horizontal crosswind 
direction, and z is the distance along the vertical axis. 
Note that the release location is the origin for x, y and 
z directions. σy and σz are called the standard  
deviation in the horizontal crosswind and vertical 
directions, respectively. These two parameters are 
also known as the Gaussian plume dispersion 
parameters, and they are defined empirically for 
different stability conditions. For Pasquill C type 
stability, Briggs formulas for urban conditions 
parameterize the standard deviations as follows 
(Panofsky and Dutton, 1984): 
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Several formulas have been proposed for the 
standard deviations, and their particular forms remain 
to be problem specific.  Results typically benefit from 
adjusting the empirical parameters. In the present 
study, some of the empirical constants that appear in 
the above formulas are treated as stochastic 
parameters within the Bayesian framework as shown 
below: 
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where C1 and C2 are stochastic parameters that 
replaces the empirical parameters 0.22 and 0.20 in 
Eq. (10), respectively. This approach allows one to 
calibrate the deficiencies in the forward dispersion 
model to certain extents, and helps improve the event 
reconstruction results significantly. Furthermore, in 
the posterior distribution, these parameters converge 
onto values that give better agreement with the 
observed data, which can be used in performing 
forward projections for the dispersion event under 
consideration. 

The prior probability density term p(m) in Eq. (3)  
represents prior knowledge about the model 
parameters (m) before observing the data (d), which 
can be expressed by assigning probabilities to model 
parameters (m) based on bounds on certain physical  
properties or expert opinions. For instance, data 
regarding the probabilities of possible wind directions 
acting on a city might be available from previous 
meteorological studies. Defining a prior probability is 
subjective and depends on the problem at hand. In 
the event reconstruction problem, since the release 
can originate from any location, one can assign a 
uniform prior probability to release location, and one 
may also assume that low release rates might be 
more likely than high release rates. Hence, the 
following can be written 

Q

Q
Qppp min1)()()( ⋅∝⋅= rm ,            (12) 

where r is the release location and Q is the release 
rate, and Qmin is a user defined minimum emission 
rate that is of importance for a given problem. It 
should be emphasized that the above form is problem 
specific, and it depends on the available prior 
information about a specific event.  

Various algorithms exist for MCMC sampling. In the 
present study, Metropolis algorithm is adopted to 
simulate samples from the posterior (Metropolis et al. 
1953). The reader is referred to Gilks et al. (1996) 
and Carlin and Louis (1996) for a detailed explanation 
of the algorithm. In the Metropolis algorithm, a 
candidate state (m*) is sampled from a proposal 
distribution at each iteration, and the candidate state 
is accepted with probability 
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where N is the total number of sensors in the network 
and m is the current state. When the MCMC 
algorithm has converged, it is expected that the 
proposal distribution draw samples from the target 
distribution, which is defined as 

)()|()( mmdm pLn ⋅=π .              (14) 

The above equation is computed using Eqs. (8) and 
(12). In Eq (8), the variance of the distribution (σ2) is 
not specified, but it is calculated in the course of 
MCMC iterations from an inverse gamma prior 
distribution. 
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Figure 1: Traces of four independent Markov chains 
converging onto the contaminant release location. 
Square markers denote sampler/sensor locations 
colored with measured concentration levels in ng/m3. 
Logarithmic (base 10) values are shown. Clear 
markers indicate sensors that registered zero 
concentration values. 

3. RESULTS & DISCUSSION 

Environmental sensor networks have been 
deployed in various cities, and specifics of these 
networks and actual data from the sensor network are 
not publicly available. Hence, direct testing of event 
reconstruction methods is not feasible. However, 



 
 

tracer field experiments designed for atmospheric 
dispersion and air pollution studies can be utilized in 
evaluating the performance of event reconstruction 
models. A series of tracer experiments were 
performed in the Copenhagen area in 1978 and 
1979. Concentrations of tracer sulphurhexafluoride 
(SF6) and meteorological conditions were measured 
and reported in Erik and Lyck (2002). For all the 
experiments, tracer was released from a tower with a 
height of 115 m. Samplers/sensors were placed 2-3 
m above the ground level along three crosswind arcs 
that are positioned 2-6 km away from the tracer 
release point. The location of the samplers is shown 
in Fig. 1. The total sampling time for the 
concentration measurements was 1 hour. In the 
tracer data corresponding to the experiment 
performed on October 19, the detection limit was 
given as 9 ng/m3, and any value below this limit was 
indicated as zero. This value is used to set the sensor 
threshold value (Cth) in Eq. (6) of the stochastic event 
reconstruction method. Out of 40 samplers, 7 
samplers registered zero concentration values.  

In the following example, the tracer dispersion 
experiment is reconstructed in terms of the following 
parameters 

),,,,,,,,( 2
21 σθ CCUQHyx=m ,                (15) 

where x and y are the spatial locations of the release, 
H is the release height, Q is the release rate, θ is the 
wind direction, U is the wind speed at the release 
height, C1 and C2 are the stochastic terms in the 
turbulent diffusion parameterization given in Eq. (11), 
and σ2 is the variance term in Eq. (8). 
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Figure 2: Multi-variate analysis of event 
reconstruction parameters. The white dot represents 
the true value from.  The outer and inner contour lines 
indicate 90% and 50%, respectively. 
 

Fig. 1 shows traces of four different Markov chains 
converging on the source location. The locations of 
the samplers are also indicated in this plot, and they 
are colored with the one hour averaged concentration 
measurements. Fig. 1 clearly shows that chains 
converge on the source location independent of the 
starting point. 

In typical emergency response operations, finding 

the location of the release is one of the primary goals. 
Probabilistic answers instead of deterministic 
answers are preferred due to the nature of 
operations. Hence, posterior distributions need to be 
mapped in terms of probabilities. The high 
dimensionality in the stochastic inversion process 
requires a careful check using multi-variate analysis. 
For that purpose the results are analyzed on a so-
called trellis plot as shown in Fig. 2. The plots on the 
diagonal are the marginal probability distributions of 
the forward model parameters. The off diagonal plots 
are the joint posterior distributions of the forward 
model parameters. 90% and 50% contour lines are 
also overlayed on the joint posterior distributions. The 
true answer from the field experiment is highlighted 
with white colored circles on each subplot.  
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Figure 3: Probabilistic plume envelope for 95% 
confidence level. Concentration unit is ng/m3 and 
logarithmic (base 10) values are plotted. Clear 
markers indicate sensors that registered zero 
concentration values. 
 

In atmospheric dispersion events, it is important 
that emergency responders are provided with results 
that incorporate uncertainty involved in the problem. 
The present Bayesian inference framework is 
convenient for addressing that need. Fig. 3 presents 
a probabilistic plume envelope with a confidence level 
of 95%. The plume envelope is generated by running 
a forward model for each posterior sample and 
storing the concentrations on a vector at desired 
locations. Then, the concentration value 
corresponding to the 95th percentile in the data is 
selected as the probabilistic plume envelope that 
gives a confidence level of 95%. As can be seen from 
Fig. 3, the plume envelopes all the samplers/sensors. 
Hence, in analyzing this plot, one can have 95% 
confidence in assuming that the actual concentration 
is what the plot indicates or below. Fig. 4 provides a 
check of this assumption. Concentration data from 
the probabilistic plume envelope is compared against 
the actual measurements from the samplers on a 
scatter plot. Clearly, about 95% of the data is 



 
 

overpredicted by the simulation that would allow safer 
decisions in case of harmful dispersion events.  

Fig. 5 shows the histograms of the stochastic 
parameters given in Eq. (11). The constant empirical 
parameters given in Eq. (10) are also overlaid on this 
plot. As can be observed from this plot, the stochastic 
terms converged onto different values.  

Use of Eq. (11) greatly improved the event 
reconstruction results. As shown in Fig. 6, the event 
reconstruction method adopting Eq. (10) in the 
Gaussian plume model is not successful, because 
the MCMC chain converges onto a zone that does not 
include the true source location. However, the event 
reconstruction method that adopts Eq. (11) is 
deemed successful, because the MCMC chain 
converges onto a zone that includes the true source 
location.  
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Figure 4: Scatter plot of probabilistic plume envelope 
(95% confidence level) vs. measurements. 
 

4. CONCLUSIONS  

A stochastic event reconstruction method for 
atmospheric contaminant dispersion is presented. 
The method is based on Bayesian inference with 
MCMC sampling. The Bayesian approach provides a 
convenient framework to propagate uncertainty to the 
final event reconstruction results. To address the fast-
response operational needs, simple fast-running 
Gaussian plume dispersion models are adopted as 
the forward model in the inverse problem.  

A probability model is suggested to take into 
account both zero and non-zero concentration 
measurements that can be available from a sensor 
network because of sensor’s detection limit. Variance 
term in the likelihood function is considered as 
unknown, and it is calculated from an inverse gamma 
prior distribution, resulting in an event reconstruction 
method free from tunable parameters. 

In practice, the release location and release rates 
are of great importance to the emergency 
responders. It is shown that the event reconstruction 

problem can be posed with many unknown 
parameters. In the event reconstruction of 
Copenhagen tracer experiment, up to 9 parameters 
are treated as unknowns. It is found that stochastic 
treatment of the empirical parameters of the 
Gaussian plume dispersion model, improves the 
event reconstruction results significantly. This 
approach allows the optimization of the dispersion 
model according to the observations. In the posterior 
distributions, stochastic parameters that appear in 
Eq. (11) converge on to values specific to the 
dispersion problem at hand, which can also be used 
in post-event dispersion projections. 
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Figure 5: Histogram of stochastic parameters given in 
Eq. (11). The dashed lines locate the constant 
empirical values given in Eq. (10). 
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Figure 6: Comparison of the traces of two MCMC 
chains. The red and blue chains belong to event 
reconstruction methods that adopt Eq. (11) and Eq. 
(10) in the Gaussian plume model, respectively  
 

The simulations have shown that the stochastic 
event reconstruction method is successful in 
capturing the true answers within the posterior 
distribution. Posterior distributions of the unknown 
parameters were also used to generate probabilistic 
plume envelopes with specified confidence levels. 
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