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1. Introduction

The National Oceanic and Atmospheric Adminis-
tration’s UrbaNet program provides mean and tur-
bulent data over selected urban environments to
a variety of interested entities including federal
and local emergency management agencies, oper-
ational forecasters, and atmospheric dispersion re-
searchers. Recently a more formal testbed network
of stations has been established in the Washing-
ton, DC area. A primary motivation in establishing
the network was the lack of data at “neighborhood”
spatial scales, and preliminary studies showing sig-
nificant differences in wind vectors from established
stations (often located at or near airports on the pe-
riphery of urban regions) and the downtown area.

Currently, each measurement station in the net-
work consists of a 10 meter tower located on a
rooftop with a propeller/vane anemometer, a sonic
anemometer, and a naturally aspirated temperature
and humidity sensor mounted at the top. Turbulent
values from the sonic anemometer and mean val-
ues from the other two instruments are transmitted
back to a NOAA server and placed in a database
every 15 minutes. Currently there are 14 stations
operational, with a cluster downtown and a wider
spaced array in the surrounding area (Figure 1).
This network of stations thus provides continuous
mean and turbulence data at spatial scales much
finer than is normally available.

2. Assessing persistence as a forecast for the
wind vector field

A useful first-order tool for operational dispersion
forecasting and modeling is the assessment of per-
sistence forecasts of the discrete wind field. A
method of quantifying the validity of persistence is
through an autocorrelation analyses. The discrete
autocorrelation (e.g., Press et al., 1989; Stull, 1988)
can be expressed as:
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Figure 1: A map showing the UrbaNet testbed net-
work locations in the National Capital Region.
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where the lag l = j∆t; j = 0, · · · , N/2.

The autocorrelation function will give correlation
values for the signal and a lagged version of itself
(Figure 2). Of interest is determining a critical raa at
a certain significance level, for a given wind compo-
nent at a given station, so that a corresponding criti-
cal lag time can be determined. This critical lag time
can then correspond to a time out to which a persis-
tence forecast can be assumed useful. The method



Figure 2: The north-south (u) and east-west (v)
components of the wind and their associated auto-
correlation functions for a six day period as mea-
sured at the Hoover Building (location DC001) in
downtown Washington, DC. For this case, the com-
puted critical correlation values gave critical lag
times of 2.75 and 3.00 hours for the u and v compo-
nents respectively. Only the correlation coefficients
for the first 36 hours of lags are shown.

has been demonstrated for example by Gille (2005).
A Gaussian distribution is assumed for a given block
of wind data, and a critical raa magnitude is deter-
mined through:

rc = erf−1(c)
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D
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where rc is a critical correlation coefficient, erf−1(c)
is the inverse of the error function for a particular
confidence level c, and D is a measure of the num-
ber of degrees of freedom (Bevington, 1969).

Because the autocorrelation function assumes in-
dependent (uncorrelated) values, which a time se-
ries of wind components is not, we define D in
equation (4) as D = N∆t/τ were N is the num-
ber of points in the time series being analyzed, and
τ is a decorrelation time scale. There can be differ-
ent strategies in computing τ . Because of instances
where the autocorrelation function could continue
near zero without actually crossing zero (a common
decorrelation criteria), this analysis chose the first

Figure 3: Critical lag times averages over the 14
sites shown in Figure 1 for five six-day blocks of
data during the period 8 July 2007 to 7 August 2007.
Error bars denote one standard deviation from the
mean.

instance of a lag time to which the autocorrelation
value dropped below the threshold raa < 0.05. So,
for example, for a six day block of 15 minute average
winds (∆t = 0.25, N = 576), if raa is less than 0.05
at a lag of 14 hours, D = (576) · (0.25)/(14) ≈ 10.

A thirty day mid-summer period was chosen to
demonstrate the autocorrelation analysis. Fifteen
minute wind component data from each measure-
ment station were divided into five six-day blocks.
Thus, five blocks for each of the 14 stations for both
the u and v components, result in 5×14×2 = 140 to-
tal autocorrelations performed. The computed criti-
cal lag times were averaged for each block and then
averaged for both components as shown in Figure
3.

3. Discussion

The results of the analysis illustrated in Figure 3
show a range of approximately 1.0 to 3.0 hours for
critical lag times, and hence times for which per-
sistence forecasts could be considered valid. The
mean of all 5 blocks is 2.24 hours. The data also fall
in two distinct groups perhaps indicating two sepa-
rate weather regimes. However, more robust analy-
ses would need to be performed to make conclusive
arguments on trends.

This brief analysis is an example of the type of
tools that are being developed for operational use of
the UrbaNet data. This particular analysis deserves



more refinement especially in the averaging meth-
ods for the autocorrelations of the wind field, and
in finding more objective means for determining D
in equation (4). However, it is a useful first-order
quantification of how long a persistence forecast for
a discrete wind field could be considered valid.
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