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1. INTRODUCTION 
 
 Short-term forecasting of the wind within the 
next half to one hour or so is useful in the provision of 
meteorological services for a localized area, such as 
aviation weather service.  Situated at a coastal area 
with complex terrain, wind forecasting for the Hong 
Kong International Airport (HKIA) is very challenging.  
The wind distribution could change rapidly due to 
terrain disruption of the background airflow.  
Land-sea interaction also results in the onset and 
retreat of sea breeze in the vicinity of HKIA in fine 
weather.  Besides the choice of runways for aircraft 
landing/departing, short-term forecasting of the wind 
could enhance the provision of low-level windshear 
and turbulence warning services. 
 
 Szeto and Chan (2006) studied the possibility of 
forecasting the wind field at the airport area in the 
short term using a numerical weather prediction (NWP) 
model.  This approach involves the ingestion of a 
vast amount of meteorological observations, both 
within and outside the airport area, into the model and 
numerical integration of the future states of the 
atmosphere following a set of thermodynamic and 
dynamic equations of atmospheric variables.  This 
paper considers an alternative approach, namely, 
training a neural network (NN) based on the past wind 
data in the airport area at high spatial resolution and 
using the NN to make short-term forecasting of the 
wind.  The basic philosophy is that, if we are just 
interested in the future evolution of the wind field in a 
short period of time, e.g. the next half an hour, it may 
be sufficient to consider the correlation between the 
winds at various locations around the airport as a 
quasi-closed physical system, i.e. without involving 
the wind and the other meteorological elements 
outside the system, such as the “background” wind 
and temperature profiles measured at locations far 
away from the airport.  This approach is similar to 
short-term wind forecasting by extrapolation of the 
main features of the wind field at the airport, but 
should be more sophisticated because it involves NN 
training of the past data.  On the other hand, the 
application of NWP models for such short-term 
forecasting of the wind may have limitations due to the 
initial spin-up required to balance the various 
meteorological variables and large demand for 
computational resources. 
 
 Doppler LIght Detection And Ranging (LIDAR) 
systems are operated by the Hong Kong Observatory 
(HKO) at HKIA for windshear and turbulence alerting.  
They measure the winds up to 10 km away at high 

spatial resolutions.  The surveillance scans typically 
have a resolution of 105 m in range and about 1 
degree in azimuth.  The radial velocity data from one 
of the LIDARs at HKIA (namely, the one situated near 
the middle of the airfield at a height of 50 m AMSL) 
would be used in this study.  The NN and the LIDAR 
data used in this study are described in Section 2.  
As a start, the NN is used to forecast the next 
surveillance scan result after 6 minutes, as described 
in Section 3.  Then the method is extended for wind 
forecasting up to 30 minutes, and the results are 
presented in Section 4.  The conclusions of the study 
are drawn in Section 5. 
 
2. NEURAL NETWORK AND THE LIDAR DATA 
 
2.1 Chaotic oscillator 
 
 The idea of chaotic neural networks was 
proposed by Aihara, Takabe and Toyoda (1990).  
They stated that in neurophysiology viewpoint real 
neuron operations are more complex than simple 
thresholding.  Therefore non-linear output function is 
more suitable to act as activate function of a neuron.  
They developed chaotic neural networks to model 
non-linear behaviour of a neuron. 
 
 Details of chaotic oscillatory-based neural 
network (CONN) and Lee oscillator could be found in 
Lee (2004) and Lee and Wong (2007).  Only a 
summary of CONN is given here.  Research on 
neuroscience and brain science in this couple of years 
discovered that there are various chaotic phenomena 
in brain functions such as oscillation between 
excitatory and inhibitory neurons.  From these 
findings, a kind of artificial neural network, namely, 
CONN, and various models to simulate human’s 
neural behaviour have been developed.  One of 
these models is the Lee oscillator.  The Lee oscillator 
contains the neural dynamics of four constitutive 
neural elements: u, v, w and z.  The neural dynamics 
are given by: 
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where u(t), v(t), w(t), and z(t) are the state variables of 
the excitatory, inhibitory, input, and output neurons, 
respectively; f() is the hyperbolic tangent function; a1, 
a2, b1, and b2 are the weight parameters for these 
constitutive neurons; θ u and θ v are the thresholds 
for excitatory and inhibitory neurons; I(t)is the external 
input stimulus; and k is the decay constant.  Figure 1 
shows the bifurcation behaviour of Lee oscillator 
model. 
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Figure 1  Bifurcation diagram of Lee oscillator. 
 

 
 

Figure 2  Lee oscillator (retrograde transport) model. 
 

The Lee oscillator is enhanced according to the 
retrograde transport mechanism in axons (Lee and 
Wong, 2007).  The neural dynamics are given by: 
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and represented schematically in Figure 2.  There 
are three major amendments from the original Lee 
oscillator.  Firstly, the recycling concept of the axon’s 
retrograde transport is implemented by including z(t) 
in both excitatory neuron (Eq. (5)) and inhibitory 
neuron (Eq. (6)).  Secondly, I(t) is included in Eq. (6) 
because incoming signal should also be considered in 
inhibitory neuron.  Thirdly, new parameters a3, a4, b3, 
b4 were added in Eq. (5) and (6), so that every 

variable has its own parameter to adjust the 
outcomes. 
 
2.2 System framework of CONN 
 

The CONN is the core part of the forecasting 
model.  Its structure is essentially a backpropagation 
neural network, but with the neurons replaced by the 
Lee oscillator (retrograde transport) model having 
different parameter settings instead of the 
conventional sigmoid function.  The structure is given 
by (Lee and Wong, 2007): 
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where xi are the input values; yk are output values,; 
weights connecting the input layer unit i and the 
hidden layer unit j are denoted by vji; weights 
connecting the hidden layer unit j and the output layer 
unit k are designated as wkj; and flee is the Lee 
oscillator with different parameters in each neuron. 
 

Two different parameter settings of the Lee 
oscillator (retrograde transport) model are used. As 
shown schematically in Figure 3, neurons with the two 
parameter settings are used in the hidden layer 
alternatively, whereas only one parameter setting is 
adopted in the output layer.  Based on a previous 
study (Lee and Wong, 2007), the oscillation of a single 
setting in CONN may be too strong or too weak, and 
the use of two parameter settings for the Lee oscillator 
in the hidden layer appears to balance the oscillation 
power at a proper level.  Further research would be 
required to study in greater depth the characteristics 
of chaotic oscillators with different parameters and to 
arrange them in a more balanced way. 
 

 
 
Figure 3  Structure of the CONN in the present study. 
 
2.3 Preparation of the LIDAR data 
 

 The LIDAR’s radial velocity data in the 
surveillance scans at 1-degree elevation are 
employed in this study.  They are first processed by 
the quality control algorithm described in Chan et al. 
(2006).  For a particular location in the surveillance 
scan with missing data, if valid velocity data are 
available at the neighbouring positions, its velocity 



value is provided by bilinear interpolation (in range 
and in azimuth) of the velocities at the neighbouring 
points.  The radial velocities are normalized (to 
between -1 and 1) before being used in the training of 
the CONN.  Likewise, for forecasting by CONN, the 
past velocities are normalized first, and the predicted 
values are denormalized and plotted. 
 
3. FORECASTING FOR 6 MINUTES 
 
 As discussed in Section 1, it is assumed in the 
present study that, over a very short time interval 
(6-30 minutes), the future evolution of the wind at a 
location is related to the wind distribution in its vicinity.  
As such, for each data point in the LIDAR’s sector 
scan, a relationship is built up between the velocity at 
this point and those at the 5 x 5 neighbouring points 
around (i.e. about 500 m in the radial direction and 5 
degrees in the azimuth centred at the data point under 
consideration) through training of the CONN.  Due to 
the large amount of velocity data but limited 
availability of computing power, the training is 
performed using the data in the last 2 hours only.  
The training of the neural network is shown 
schematically in Figure 4.  For every 6 minutes, the 
actual velocity distribution (depicted in blue) is used to 
make a 6-minute forecast.  The weighting 
parameters inside the neural network are tuned so 
that the forecast is as close to the reality (depicted in 
yellow) as possible.  The process is repeated for 2 
hours, and the weighting parameters inside the neural 
network are continuously adjusted. 
 
 After the training for 2 hours’ data, the LIDAR 
data are used to make a forecast into the future 
distribution of the radial velocity.  As shown in Figure 
4, the LIDAR data of 24 minutes are employed (i.e. 
the 102nd minute to 126th minute) to the make the 
forecast in the next 6 minutes (i.e. the 132nd minute).  
The forecast wind field is given in red in Figure 4.  
The process is repeated.  For each 6-minute forecast 
wind field, a total of 15 individual forecasts are made 
from the previous 24 minutes by using slightly different 
weighing parameters of the neural network (which are 
generated by random).  At every location in the 
LIDAR’s sector scan area, the two extreme velocity 
values (i.e. the highest normalized velocity and the 
lowest normalized velocity) are removed, and the 
remaining 13 velocity values are averaged to give the 
final 6-minute forecast value.  This “ensemble 
average” approach helps suppress the noise in the 
velocity field from the individual forecast. 
 
 Two case studies have been conducted for this 
6-minute forecast.  The first example is given in 
Figure 5.  It is a case of the emergence of mountain 
wake flow to the southwest of HKIA on 20 July 2006.  
The forecast wind field basically captures the 
occurrence of the mountain wake, with slight reverse 
flow (winds blowing towards the LIDAR as coloured in 
green vs. the prevailing flow blowing away from the 
LIDAR as coloured in brown).  
 
 Another example is shown in Figure 6.  It is the 
retreat of a sea breeze front in the late afternoon of 26 
October 2006.  In general, the neural network 
forecast gives the trend of the occurrence of easterly 
wind (coloured brown in Figure 6) over the western 
part of HKIA.  However, the area of the westerly sea 

breeze (coloured green in Figure 6) is overestimated. 
 
4. FORECASTING FOR 30 MINUTES 
 
 The methodology described in Section 3 is 
extended to make forecast for 30 minutes.  The 
training of the neural network and the forecasting 
based on the trained network are shown schematically 
in Figure 7.  Five wind distributions (depicted in blue) 
are used to forecast the winds in the next 30 minutes, 
and the weighting parameters in the neural network 
are adjusted by comparing with the reality (yellow).  
After training for about 2 hours, the latest 24 minutes’ 
data are used to give a forecast of the next 30 minutes 
(depicted in red). 
 
 The results for the mountain wake case on 20 
July 2006 are shown in Figure 8(a).  The trend of the 
occurrence of the wake flow is successfully captured, 
though the areal extent of the wake is over-estimated.  
To quantitatively assess the similarity between the 
forecast and the actual wind distributions, 
root-mean-square (RMS) error of the forecast field is 
computed.  As a control, the RMS error of the 
persistence method is also evaluated, namely, using 
the last wind distribution in the 24-minute input 
dataset as a “forecast” of the wind distribution in the 
next 30 minutes.  As given in Figure 8(b), neural 
network outperforms the persistence method for the 
last 12 minutes or so in the 30-minute forecast period. 
 
 The case of retreating sea breeze is shown in 
Figure 9(a).  The neural network forecast 
successfully captures the trend of the spreading of 
away-from-the-LIDAR flow (yellow and brown) to the 
northwest over western part of HKIA, though the rate 
of spreading is slower than reality.  It has smaller 
RMS error compared to persistence except in the last 
6 minutes of the 30-minute forecast period.   
 
5. CONCLUSIONS 
 
 To the knowledge of the authors, the present 
work is the first application of CONN to 2D wind 
forecasting based on LIDAR.  Due to limitation in 
computing resources, only the wind data of 2 hours or 
so are used in the training of the neural network, 
which is definitely not sufficient to cover all the 
complicated wind patterns that could occur in the 
vicinity of HKIA due to weather phenomena as diverse 
as mountain wake flow, mountain waves, sea breeze, 
etc.  Despite this limitation, based on two case 
studies, the methodology at least shows skills in 
capturing the trend of the occurrence of mountain 
wake flow and the retreating of sea breeze.  For 
30-minute forecast, the RMS error could be lower than 
that from the simple rule of persistence. 
 
 Future work would focus on the training of the 
neural network using a much larger dataset (at least a 
couple of months) but with a reduced area for the wind 
forecast.  For instance, instead of a 2D wind 
distribution, only the 1D wind variation along a glide 
path of HKIA is considered.  The wind forecast for the 
glide path would be useful in the short-term alerting of 
low-level windshear (Chan et al. 2006). 
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Figure 4  Schematic diagram showing the data used for training the neural network and forecasting the wind field 
in the next 6 minutes (the next LIDAR scan). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 5  Mountain wake case in easterly wind: actual LIDAR 
observations separated by 6 minutes (left) and the corresponding 
6-minute forecast by the neural network (right). 



Figure 6  The case of retreating westerly sea breeze and the 
establishment of the prevailing easterly wind over the airport: actual 
LIDAR observations separated by 6 minutes (left) and the 
corresponding 6-minute forecast by the neural network (right). 



 
 
Figure 7  Schematic diagram showing the data used for training the neural network and forecasting the wind field 
in the next 30 minutes (the next 5 LIDAR scans). 



 

Figure 8  Similar to Figure 5, but for 30-minute 
forecast using the neural network.  The RMS 
errors of the persistence method and the neural 
network are shown in the graphs above. 



  

Figure 9  Similar to Figure 6, but for 30-minute 
forecast using the neural network.  The RMS 
errors of the persistence method and the neural 
network are shown in the graphs above. 


