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nges of aviation hazard monitoring have been 
idely and many technologies have been 
(Mahapatra (1999)). The attention of this work 
 the on-board sensing capabilities rather than 
remote weather information data-links. The on-
ther sensors, if operated properly, are able to 
h-resolution, higher-data rate, and close-to-in-
urements inside individual radar resolution 
herefore, on-board sensing capabilities can 

 values for both military and civilian missions.  

of aviation weather hazards are of interest: (a) 
 hydrometeor particles, which are generally 
and analyzed through polarimetric radar 
(Vivekanandan (1993)), and (b) Air-motion 

ards. Motivated by the request from limited on-
e and power, this work attempts to study the 

of developing a processing scheme in order to 
ultiple types of hazards simultaneous with a 
onfigurable sensor platform.  

own that the Space-Time Adaptive Processing 
s been applied to airborne phased array radars 
003)) for detecting hard target from clutters. 
(2003) discussed the approach to incorporate 
 measurement into STAP to enhance Ground 

rget Indication (GMTI) detection performance. 
(1989) and Novak (1992), the optimal 

 detector and the polarimetric matched filter 
 introduced. Polarimetric radar information is 
rporated into the time-frequency analysis 
 and the improvement in Angle-of-Arrival (AOA) 
accuracies are demonstrated (Zhang (2006)). 
 works, on the other hand, mainly address 
cting target from stationary ground-clutter, or 
ultiple targets in space with polarimetric data 

 degree of freedom.  

ed here that polarimetry-enhanced STAP can 
ith distributed weather targets with internal 
ased on an unified space-time-polarimetry 
 different kinds of state-vector configuration 
ifferent hazard monitoring filters, which can be 
ultiple tasks such as detecting air-traffic in 
l meteorological condition (IMC), measuring 

ds, as well as separating hydrometeor hazards 
rain and icing) using joint space-polarimetry 
.    
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2. THE CONCEPTUAL RADAR SYSTEM 
OPERATION 

 
A polarimetric array radar sensor is being designed by the 
University of Oklahoma (OU), which has a simple top-
level system concept as shown in Figure 1. The sensor 
transmits, receives and digitalizes the dual-polarized 
signals from multiple antenna channels. A 3-D data cube 
can be constructed with indexes of (a) antenna (b) 
polarization state (c) pulse number. Since the receive 
elements are omni-directional, the field impinging on the 
antennas are superposition of hazards from various 
spatial locations. The system will rely on digital array 
processing to ‘scan’ the 3-D space and generate a 
comprehensive ‘hazard map’. 
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Figure 1  The conceptual operation for polarimetric 
space-time radar for aviation hazard monitoring 
 
As one of the key technologies of such systems, the dual-
polarized array antennas have already been used in some 
airborne radar applications (Skora (2005)).  In our design, 
the digital beam-forming technique is suggested to avoid 
the complicated dual-polarized feeding network in the 
analog beamforming scheme, and to support the space-
time processing algorithms.  Polarimetric measurement 
can be obtained on a pulse-to-pulse switching basis 
(Santalla (2002)). 
 

3. THE SPACE-TIME PROCESSING 

3.1   Air-traffic Detection 
 
For this case, assuming a radar resolution volume 
containing both win-driven distributed hydrometeors and 
air-traffic-type target, is observed by N receive antenna 
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channels with the same polarization and M pulses from 
each channel, we construct a MN×1 space-time vector Z  
, and also construct MN×1 space time steering vector st,  
which predicts the phase distribution at each antenna 
element and each received pulse, using the notations of 
Guerci (2003), we have , where b is the 
Doppler steering vector and a is the spatial steering 
vector. ÐÐ denotes the Kronecker product.  

nZn

⊗st = b a

 
The key to apply space-time processing to distributed 
target is the space-time covariance matrix defined as  
 

Q = E fZnZ
¤
ngQ = E fZnZ
¤
ng (1) 

, where E {⋅} represents statistical average and QQ can be 
estimated through multiple-sections of training data 
samples. A simulation study is performed to investigate 
the structure of QQ for an assumed airborne rain-fall target 
associated with different wind-fields. The rain-fall consists 
of numerous (>104) samples of spherical water drop 
scatterers with various sizes, and the total receive field is 
the combination of contributions from all the scatterers in 
the volume. It is observed that for the weather targets, the 
structure of QQ matrix depends on the array configuration 
and observation geometries.   
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Vr=Vx=0,Vy=-10 m/s, Vz =10m/s
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                     (b) k  when v  is zero QkkQk rvr

Figure 2  The 2-D plot of k  for two different wind 
conditions (v  as radial velocity) ,  v  = -10 m/s and v  = 

10 m/s.  All wind components have standard deviation 
(turbulence) ¾  = 5 m/s. M=32, N=5 (¸  spacing). 

QkkQk
xvx yvy zvz

x;y;z¾x;y;z /2¸/2
 
For M=24 and N=5, an example is shown in Figure 2 to 
depict the impact of wind component on QQ. We can see 
that k  has N significant ‘ridges’, and as the ratio of 
tangential-wind to radial-wind increases, the ridges of k  
becomes wider and the entire k  magnitude becomes 
smoother. A more useful tool to describe the impact of 
wind hazards is the eigenspectra, which is an orderly 
arrangement of eigenvalues of QQ. Simulation results show 
that turbulence and tangential wind widens the 
eigenspectra (in Figure 3).     
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Figure 3  It is observed that stronger tangential wind 
fields and turbulence result in ‘wider’ space-time eigen-
spectra. M = 24 and N = 3, the first 15 eigen-values are 
plotted.                                  
 
Based on the above knowledge, the adaptive space-time 
processor should recursively estimate the QQ from training 
observation cells and apply the optimal filtering 
(maximizing signal-to-clutter-ratio) to the volumes under 
surveillance: 

y = z¤nwopty = z¤nwopt (2) 
 
, where w , ss is the desired signal vector, ·· 
is a constant scalar.  

opt = ·Q¡1swopt = ·Q¡1s

For actual scenarios of detecting non-cooperative air-
traffic in IMC condition, the location and velocities of the 
‘desired signal’ is unknown, thus a space-time scanning 
approach is used as the basis of a practical algorithm. 
The procedure of this algorithm can be summarized as (1) 
estimating the wind vectors and the space-time 
covariance matrix QQ for weather clutter, (2)  construct the 
space-time steering vector stst for each possible radial 
velocity  and µµ (AOA), (3) for each v  and AOA, 
compute the space-time-spectrum, under certain 
assumptions, the space-time-spectrum can be derived as  

vrvr rvr

 
P (µ; vr)

= E
n
kw0

optZnk2
o

= Znst (µ; vr) ¢Q¡1 ¢ st (µ; vr)
¤
Z¤

n

P (µ; vr)

= E
n
kw0

optZnk2
o

= Znst (µ; vr) ¢Q¡1 ¢ st (µ; vr)
¤
Z¤

n 

(3) 
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To illustrate the operation of the algorithm based on 
space-time-spectrum, a simulation example is run with an 
X-band radar resolution volume at 0° AOA containing 
rainfall scatterers. The wind-field velocities have Gaussian 
distribution with mean vector (20, 20, 30) m/s and 
standard deviation (10 10 10) m/s (turbulence).  Assuming 
another ‘specie’ of scatterers (e.g., air-crafts, birds, etc.) 
locating inside the same cell at -10° azimuth direction and 
have mean velocity (-45, 20, 0) m/s and (10,10,0) m/s 
standard deviation, and the QQ for weather targets is 
already known. 
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                        (a)  PP in (3) without Q  applied ¡1Q¡1
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                      (b)  PP in (3) with Q  applied ¡1Q¡1

 
Figure 4  Illustration of space-time filtering results on PP, 
for a simulated mixed hazardous scenario. 
 
As we can see from Figure 4(a), before the space-time 
filtering, the weather clutter signature is ‘spread’ within 
certain velocity and angular regions. The reflectivity of the 
desired targets is relative weaker and overwhelmed.  
Applying the Q , on the other hand, suppresses the 
weather clutter and makes the desired target signature 
rise up as the highest peak in the ‘spectrum map’, the 
AOA of the desired target can be estimated 
simultaneously with its radial velocity.  

¡1Q¡1

 

The algorithm based on equation (3) assumes that the 
desired target signal and weather clutter are statistically 
uncorrelated to each other, also the weather field 
parameters during the observation time period remains 
constant.  Thus the performance of space-time filtering on 
the distributed targets can be estimated relatively easier, 
as for given QQ, Klemm (2002) gives the boundaries of the 
optimal signal-to-clutter improvement factor (IFoptIFopt) as 
 

           
1

¸max
tr (Q) · IFopt ·

1

¸min
tr (Q)

1

¸max
tr (Q) · IFopt ·

1

¸min
tr (Q)

 (4) 

 
, where tr  denotes the trace of a matrix and ¸ , ¸  
are the minimum and maximum eigenvalues of QQ, 
respectively.   

()tr() min¸min max¸max

 
 

3.2   Wind-hazard Estimation 
 
Wind-hazards, such as windshear, turbulence and strong 
up/down drafts, are major threats to aircrafts during 
different flight stages. Remote-sensing of the wind 
hazards, such as the F-factor estimation (Mahapatra 
(1999)), requires real-time estimation of both vertical and 
horizontal wind vectors as well as their time-derivatives. In 
order to accurately estimate QQ for optimal space-time 
filtering as defined in (2), wind estimation is also a critical 
step. In this work, we use a simple interferometry 
approach to incorporate the wind-estimation into the 
space-time processing architecture. The interferometer or 
the correlation receiver multiplies time-delayed signals 
from one receive antenna with the signals from the other 
antenna, and feeds the results through a low-pass filter. 
For stable wind-fields (when the turbulence and 
windshear are weak), it can be shown that the output from 
low-pass filtering is a non-stationary process with 
numerous frequency components. The strongest 
frequency component has a frequency value of 
 

fCF =
2¿¹v2

tan

¸R0
fCF =

2¿¹v2
tan

¸R0  
(5) 

 
, where ¿¿  is the time-delay between the two receive 
channels, ¸̧ is the radar operating wavelength, R  is the 
range of the scattering volume, and  is the mean 
tangential wind velocity. The tangential wind speeds can 
then be estimated from (5), and combined with radial 
velocity estimation from Doppler spectrum of a single 
channel to obtain a 2-D wind picture.  

0R0

¹vtan¹vtan

 
A Monte-Carlo simulation for a single radar scattering 
volume is performed for a 9.5-GHz airborne radar with 3° 
beam-width. The range-gate from pulse-width is 150 m 
and the range of the scattering volume is 1 km.  200 point 
scatterer sampling points are randomly placed in the radar 
resolution volume for each Monte-Carlo iterations. The 
correlation is passed through a low-pass filter with 1KHz 
cutoff frequency, and then a Burg spectrum estimation is 
performed on the low-pass filter’s outputs. The radar line-
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of-sight is at zz direction, and the motions of the point 
scatterers are driven by an assumed wind-field relative to 
the aircraft, with different levels of standard deviations (¾¾). 
10-iterations of Monte-Carlo simulations are performed 
and the results are averaged. 
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(a) Time-series waveform (I part) of correlation receiver 

output when σ = 0.01 m/s 
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       (b) Power spectrum density of correlation receiver 

output when σ = 0.01 m/s 
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(c) Time-series waveform (I part) of correlation receiver 

output when σ = 0.2 m/s 
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       (d) Power spectrum density of correlation receiver 
output when σ = 0.2 m/s 

 
Figure 5  Time-series waveforms and power spectrum 
density (PSD) of a simulated radar resolution volume with 
random scatterers and relative wind velocities vx=vy=70 
m/s, vz=150m/s. Radar operating frequency is 9.5 GHz. 
 
Figure 5 shows the time-waveforms as well as the PSD of 
the low-pass filter output for σ=0.01 m/s and 0.2 m/s, 
respectively. It is observed that when the σ is small, the 
Monte-Carlo simulation results match the theoretical 
prediction very well, and the estimation error of ¹v  
based on (5) is about 5 m/s. The increase in σ, however, 
gives rise to other frequency components and makes the 
PSD become ‘flat’. 

tan¹vtan

 
The characteristic frequency f  is such a low frequency 
that it does not have significant impact on the long-range, 
lower frequency radars. While for an airborne radar 
operating at shorter range to weather hazards, it is 
possible to extract fCFfCF  as long as the observation time is 
sufficient. The Micro-Doppler processing introduced in 
Chen (2006) may be a good solution for this case. 

CFfCF

 
 

4. THE SPACE-POLARIMETRY PROCESSING 
 
Assuming mixed weather hazards (rain, snow or hail) 
locate at some unknown directions (µµ), and we hope to 
detect the existence of one of them from others.  
Polarimetric information will be needed for this case. 
Suppose the antenna array consists of N elements and at 
a given time t , each channel ii produces a zero-mean 
Gaussian polarimetric signal vector  

0t0

Xi =
£

HHi HVi VVi

¤0
Xi =

£
HHi HVi VVi

¤0
 (6) 

, and a space-polarimetry signal vector with length 3N can 
be constructed as 

Xp =
£

X1 X2 : : : XN

¤0
Xp =

£
X1 X2 : : : XN

¤0
 (7) 
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The space-polarimetry covariance matrix can be defined 
as 

Qp = E
©
XpX

¤
p

ª
Qp = E

©
XpX

¤
p

ª
 (8) 

, which can be shown to have a structure 
 

         

Qp =

26664
Rp (µ) R12 (µ) ¢ ¢ ¢ R1N (µ)
R21 (µ) Rp (µ) ¢ ¢ ¢ R2N (µ)

...
...

. . .
...

RN1 (µ) RN2 (µ) ¢ ¢ ¢ Rp (µ)

37775Qp =

26664
Rp (µ) R12 (µ) ¢ ¢ ¢ R1N (µ)
R21 (µ) Rp (µ) ¢ ¢ ¢ R2N (µ)

...
...

. . .
...

RN1 (µ) RN2 (µ) ¢ ¢ ¢ Rp (µ)

37775 (9) 

 
, where (Novak(1992)) 
 

Rp (µ) = ¾

24 1 0 ½
p

°
0 " 0

½¤
p

° 0 °

35Rp (µ) = ¾

24 1 0 ½
p

°
0 " 0

½¤
p

° 0 °

35
 

(10) 

, and  
 

         
Rij (µ) =

(
Rp (µ) ¢ ej2¼ d sin µ

¸ ; i < j

R¤
p (µ) ¢ e¡j2¼ d sin µ

¸ ; i > j
Rij (µ) =

(
Rp (µ) ¢ ej2¼ d sin µ

¸ ; i < j

R¤
p (µ) ¢ e¡j2¼ d sin µ

¸ ; i > j 
(11) 

 
 
The four parameters ¾¾ (ZR), "" (LDR), °° (ZDR) and ½½ (ρhv) 
are the feature parameters for target/clutter 
characterization.  It is emphasized here that these four 
parameters are functions of µµ for meteorological targets, 
and multiple-types of hazards from different AOAs may 
belong to different species. Therefore, joint-space-
polarimetry processing is useful to generate the ‘merged’ 
hazard information which is not available for space-only or 
polarimetry-only processing.  
 
A meteorological scatterer knowledge-base (MSKB) can 
be established and used to predict the AOA-dependence 
of the polarimetric parameters. Figure 5 shows the basic 
geometry for a simulated hail-type scattering case. The 
complex radar cross section (Riegger (1989)) of a single 
scatterer is calculated using the finite element method 
(FEM). Figure 6 depicts the results of the HH scattering 
component for different particle sizes.  
 

AOA

Antenna array

scattering 
volume

d

y

x

z

 
 
Figure 6  A simulated meteorological scattering case: a 
hail-type ice-spheroid with length d at main axis and 5:1 
axis ratio. The scatterer is within a volume at a specific 
AOA relative to the antenna array.  
 

-40 -30 -20 -10 0 10 20 30 40
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

AOA (°)

σ1/
2 , m

et
er

s

Re(σ1/2), d=20mm

Im (σ1/2), d=20mm

Re(σ1/2), d=40mm

Im (σ1/2), d=40mm

 
(a) Monostatic complex RCS of the spheroid with d=20 

mm and 40 mm, respectively. 

-40 -30 -20 -10 0 10 20 30 40
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

σ
Bi1/

2  (m
)

φscat - φinc

Re( σ 1/2
HH ), d= 25 mm

Im( σ 1/2
HH ), d= 25 mm

Re( σ 1/2
HH ), d= 40 mmIm( σ 1/2

HH ), d= 40 mm

 
(a) Bi-static complex RCS of the spheroid with d=25 mm 

and 40 mm, respectively. 
 
Figure 7  The dependence of 

p
¾HH

p
¾HH  on AOA and 

scattering angle, of the simulated hailstone for both mono-
static and bi-static cases.  
 
The data in Figure 6(a) can be used in MKSB and assist 
the prediction of polarimetric parameters from different 
angles. Also from Figure 6(b), we can observe a slight 
variation of RCS at different receive array element, due to 
the small variations of the scattering angles from the 
target. However, this variation is so small that it can be 
either compensated or ignored.  
 
Similar to the space-time processing, an optimal weighting 

 can be applied to the signal vector X  at given 
clutter covariance Q  and scanning variable µµ, the 
space-polarimetry filtering will generate a 1-D notch-
filtered spectrum as 

woptwopt pXp

pcQpc

 
Ppn (µ) = Xpa (µ) ¢Q¡1

pc a¤ (µ) X¤
pPpn (µ) = Xpa (µ) ¢Q¡1

pc a¤ (µ) X¤
p  (12) 

 
, or on the other hand, generate a matched-filtered 
spectrum, with the assumed hazard covariance Q  : psQps

 
Ppm (µ) = Xpa (µ) ¢Qpsa

¤ (µ)X¤
pPpm (µ) = Xpa (µ) ¢Qpsa

¤ (µ)X¤
p (13) 
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a (µ)a (µ) is the spatial steering vector In equations (12) and 
(13). 
 

5. Conclusions 
 
A unified polarimetric array radar architecture provides 
true potential of multi-functional external hazard detection 
and monitoring by allowing simultaneous space-time and 
space-polarimetry processing. With the space-time 
processing, it is possible to characterize the wind-hazards 
and detect external air-traffics from heavy weather 
clutters. The space-polarimetry processing is used to 
discriminate different types of hydrometeors. More 
practical algorithms and hardware systems are being 
developed.  
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