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1. Introduction 
   Currently in development at NESDIS, the new 
AVHRR Clear-Sky Processor for Oceans (ACSPO) 
will replace the heritage Main Unit Task (MUT) system 
used at NESDIS since the early 1980s and at NAVO 
since mid-1990s under the name of SEATEMP 
(McClain et al., 1985; Walton et al., 1998; May et al., 
1998; Ignatov et al., 2004). Similar to the MUT, 
ACSPO generates AVHRR clear-sky radiances over 
oceans, from which sea surface temperatures (SST) 
and aerosol products are derived. A major 
improvement in ACSPO over the MUT is the full 
integration of global clear sky AVHRR radiances with 
the National Centers for Environmental Prediction 
Global Forecast System (NCEP/GFS) fields. A fast 
Community Radiative Transfer Model (CRTM), 
developed at the NESDIS Joint Center for Satellite 
Data Assimilation (JCSDA) and similar in its overall 
philosophy to the RTTOV (radiative transfer model for 
TOVS; Saunders et al., 1999, 2007), is then run with 
NCEP/GFS inputs to predict TOA clear-sky brightness 
temperatures (BT) in AVHRR bands 3B (3.7 μm), 4 
(11 μm) and 5 (12 μm). Currently, the CRTM BTs are 
used for quality control (QC) of AVHRR BTs and for 
improvements to ACSPO cloud mask. Physical SST 
retrievals are also being explored, in addition to the 
regression Multi-Channel (MCSST) and Nonlinear 
SST (NLSST) retrievals, which have been preserved 
in ACSPO from the MUT. Accuracy of CRTM and 
GFS input for all these applications is crucial. Careful 
implementation and validation of the forward CRTM is 
thus the focus of this study. 
   The paper is organized as follows. Section 2 
introduces the radiative transfer equation for 
band-averaged radiances used in CRTM. It also 
describes the NCEP GFS data and how they are 
collocated with AVHRR observations within ACSPO. 
 
*Corresponding author address: XingMing Liang, 
NOAA/NESDIS/STAR, WWB Rm. 603, 5200 Auth Rd, Camp 
Springs, MD 20746; e-mail: Xingming.liang@noaa.gov. 

Section 3 describes the implementation of CRTM/GFS 
in ACSPO and its optimization through a number of 
sensitivity analyses towards minimization of the M-O 
bias. In particular, accurate treatment of finite NCEP 
GFS layers in CRTM and using Fresnel’s model instead 
of black surface reflectance model improve the M-O 
statistics in all AVHRR bands and for all platforms. 
Using Reynolds-Smith (version 2) weekly SST (referred 
herein as the “Reynolds SST”) rather than NCEP GFS 
SST (referred below as the “NCEP SST”), also 
improves the M-O bias. The improvement is most 
noticeable in the coastal areas. In section 4, the M-O 
bias is analyzed in a variety of environmental and 
geographical conditions and in the full AVHRR swath. 
We conclude that, overall, the CRTM performs 
accurately and relatively uniformly in the full range of 
retrieval conditions representative of their global 
variability and across the swath. Section 5 checks the 
stability of the M-O bias over a period of one week, and 
section 6 summarizes the results of this study. 
 
2. Forward Model and Input Data 
   Neglecting extraterrestrial radiation at night, 
omitting effects of scattering in the atmosphere, and 
assuming that the oceanic surface is flat (i.e., its 
emissivity obeys Fresnel’s model), the radiative 
transfer equation (RTE) for a wide-band sensor such as 
AVHRR is written as follows 

)()())(1()()()()()( θτθθεθθτθεθ ↓↑ −++= LLTBR s   (1) 

Here, )(θR  is TOA radiance at sensor level; θ  is 
sensor view zenith angle; )( sTB  is Planck radiance; 

sT  is SST; )(θτ , )(θ↑L  and )(θ↓L  are 
atmospheric transmittance, upwelling, and downwelling 
radiance, respectively; and )(θε  is surface 
emissivity. Each term in Equation (1) with the overbar 
sign represents a band average value (i.e., convolved 
with the respective sensor spectral response )(θΦ . The 
assumption that the monochromatic form of the RTE 
holds for wide-band radiances is made in any fast RTM 
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such as the RTTOV or CRTM, because line-by-line 
(LBL) calculations are computationally unaffordable 
for real-time applications. For CRTM, channel 
average transmittances in the thermal IR are 
calculated using a fast and accurate Optimal Spectral 
Sampling (OSS) algorithm developed by Atmosphere 
and Environment Research Inc. (Moncet et al., 2004). 
CRTM comparisons against LBLRTM have shown 
that CRTM BTs have an RMS error of ~0.03K with 
respect to LBLRTM (note that the bias by definition is 
zero as CRTM is trained against the LBLRTM). 
(www.orbit.nesdis.noaa.gov/smcd/spb/CRTM/).  
 
2.1 Band average surface emissivity model 
   Following the CRTM philosophy, band average 
emissivity is written as follows, 
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Here, ν  is the wavenumber and νΔ  is the 
wavenumber range for a band. For Fresnel’s surface, 
spectral emissivity, ),( θνε , is calculated from 
horizontally and vertically polarized reflection 
coefficients using Fresnel’s equation (c.f., Masuda et 
al., 1988). Note that Fresnel’s model does not 
account for wind speed dependence, which may 
result in emissivity error and subsequently affect the 
M-O bias (Masuda et al., 1988). However, further 
analyses by e.g. Watts et al. (1996) and Wu and 
Smith (1997) have shown that the wind effect on 
emissivity is small (error in BT: 0.1K+0.1Kσ) in a 
sensor zenith angle range from -55º to 55º, even 
when wind speed is large. The ACSPO processes 
AVHRR data in a full swath, up to ±68º. In section 4, 
the wind speed dependence of the bias will be 
analyzed in the full swath, including large zenith 
angles. 
   Using the band average emissivity model may 
introduce some additional errors in CRTM BT. 
However, this approach has been extensively used in 
wide-band RTMs and the associated errors in the 
TOA BTs are deemed to be small (Sherlock, 1999; 
Wan and Dozier, 1996). 
 
2.2 NCEP/GFS data 
   The associated surface variables (surface 
pressure, temperature, u- and v-wind speeds), and 
atmospheric profiles of pressure, air temperature, 
geopotential height, water vapor, and O3 are specified 
from the NCEP/GFS files 
(www.emc.ncep.noaa.gov/modelinfo/). GFS data are 
available at 1º latitude-longitude spatial resolution at 

26 levels of atmospheric pressure and temperature 
from 1000 to 10 mb, at 20 levels of relative humility 
from 1000 to 100 mb, and at 6 levels of O3 from 100 to 
10 mb. GFS data are generated four times a day for 
different forecast times. GFS fields are linearly 
interpolated in time to match AVHRR observation time, 
using two 12-hour forecasts separated by 6 hours. The 
fields interpolated in time are then used as CRTM input 
to generate TOA BTs at 1º resolutions. The simulated 
1º BTs are then interpolated in space to match the 
AVHRR 4 km GAC pixel. 
   Atmospheric profiles of pressure, air temperature, 
RH, and O3 amount are reported in GFS for 
atmospheric levels corresponding to boundaries of the 
atmospheric layers. The level-specific variables need to 
be converted to effective layer-specific variables before 
they are used as input to CRTM. Some of these 
level-to-layer conversions are performed within the 
CRTM and yet some are left to the CRTM user. Section 
3.1 explores sensitivity to a particular implementation. 
   In addition to H2O and O3, CRTM also accounts for 
the absorption due to five minor and uniformly mixed 
gases (CO2, O2, CO, CH4, and N2O). This is done by 
interpolation between 48 representative atmospheric 
profiles.  
 
2.3 AVHRR data    
   In this study, the CRTM is validated against the 
ACSPO clear-sky BTs in Ch3B, Ch4, and Ch5 onboard 
NOAA-16,-17, -18 and MetOp-A. These are derived 
from AVHRR L1B GAC (Global Area Coverage) 4km 
data. The equator crossing time (EXT) for NOAA-16 
-17, -18 and MetOp-A in the nighttime are ~4am, 
~10pm, ~2am and ~9:30pm, respectively. We used one 
week of ACSPO BTs data from 16–22 February 2007 
(corresponding Julian days are from JD=47 to JD=53). 
   The BTs are calibrated, navigated, and 
quality-controlled using information available from L1B 
files. The sensor view zenith angle, solar zenith angle, 
UTC time, and latitude and longitude of the pixels are 
also saved in ACSPO from L1B data. The ACSPO 
cloud-mask is currently being documented and will be 
reported elsewhere.     
   To eliminate solar contamination, nighttime data are 
specified as those pixels with solar zenith angle >118º 
(Cao et al., 2001; Dash and Ignatov, 2008). As a result, 
about 2 million GAC clear-sky nighttime pixels are 
available globally within a 24 hour period (~14 orbits) 
from each platform. 
 
3. CRTM Implementation in ACSPO 
   The input data to CRTM include atmospheric 
profiles, SST, and modeled surface emissivity. The way 
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in which these variables are specified in CRTM may 
affect the M-O bias. This section discusses the CRTM 
implementation in order to minimize the M-O bias. 
 
3.1 Treatment of water vapor 
   NCEP/GFS reports atmospheric pressure and 
temperature at 26 levels and RH at 20 levels. The 
level of GFS RH needs to be converted to layer the 
mass mixing ratio of water vapor before being input to 
CRTM. The mass mixing ratio of water vapor is 
proportional to RH and the saturation mixing ratio of 
water vapor, and can be represented as follows: 
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Here, 
ohMW 2

and 
dryMW  are molecular weight of  

water and effective molecular weight of dry air, 
respectively, P  is atmospheric pressure, and 

)(Tes  is saturation vapor pressure (SVP) over 
water, which is a function of air temperature, T .  
   In the earlier SVP calculations, Goff-Gratch 
empirical formulation (1946) was customarily used. 
The newer measurements by Guildner et al. (1976) 
were fit polynomially (Flatau et al., 1992). Table 1 
compares the two SVP values for several air 
temperatures. The largest difference up to 14% takes 
place at low temperatures. Since those are typically 
associated with low water vapor content, the effect on 
the TOA BTs is only 0.02K.   
   The dependence of the SVP on temperature 
shown in Table 1 is exponential. In the initial ACSPO 
implementation, layer temperatures were first 
calculated as an average of the two levels and used 
to calculate the SVP and subsequently the mass 
mixing ratio for a layer using Equation (3).  As an 
example, Figure 1 (left) shows the M-O biases in Ch5 
for one day and three platforms (NOAA-16 through 18) 
using this initial implementation. The bias strongly 
depends upon water vapor with amplitude of up to 3K. 
   A more appropriate approach is to first calculate 
the SVP and mass mixing ratio at each level, and 
then calculate the layer effective water vapor content, 
assuming its exponential decay with the height. 
Figure 1 (right) shows that using this latter approach 
reduces the M-O bias by a factor of 2 (from ~3K down 
to 1.5K). 
   We thus conclude that a consistent treatment of 
finite layers in NCEP/GFS profiles improves 
CRTM-AVHRR comparison. It is also expected that 
for higher vertical resolution atmospheric profiles, 
such as ECMWF data, this level-to-layer conversion 

will be less sensitive to uncertainty. Hereinafter, all 
analysis presented are based on the second approach, 
which appears to be more accurate. 
 
3.2 Black vs. Fresnel’s surface model 

Figure 1 shows that the consistent treatment of 
NCEP/GFS finite layer in CRTM affects the M-O bias 
progressively more towards higher water vapor. The 
low-water-vapor end remains unchanged and biased 
high by ~1.5K. One of the possible causes is the black 
surface assumption. Figures 2 and 3 compare M-O 
bias for black and Fresnel’s surfaces in three AVHRR 
bands and four platforms. We conclude that using 
Fresnel’s instead of black surface model reduces the 
water vapor and sensor zenith angle structures of the 
M-O biases.  

 
3.3 Using Reynolds instead of NCEP SST 
   First-guess SST field integrated in ACSPO comes 
from the GFS parameter called “surface temperature,” 
which comes from land surface temperature over land 
and from Reynolds-Smith SST over ocean. Once these 
1º resolution data are interpolated to match 4 km GAC 
pixel data and are used as input to CRTM, large errors 
in SST may occur in the coastal areas where land 
values may be used in the interpolation. Whether a 
gridded value came from a land pixel or from a sea 
pixel could be, in principle, determined by the land-sea 
mask. However, in this study we have chosen to 
implement an optional additional input of 
Reynolds-Smith weekly V.2 SST to ACSPO (found at 
ftp://ftp.emc.ncep.noaa.gov/cmb/sst/oisst_v2/.)  
   Figure 4 shows global histograms of M-O biases for 
NCEP SST and Reynolds SST input to CRTM. Using 
Reynolds-SST results in an increased bias and thus 
leaves a wider margin for the future aerosol inclusion in 
the model. Also, there is a large improvement in the 
M-O standard deviation in comparison to NCEP SST, 
which is equivalent to removing half of error, in an RMS 
sense.  
   Figure 5 shows column water vapor and sensor 
zenith angle dependences of the M-O bias. The M-O 
biases for Reynolds SST input are larger than that from 
NCEP SST in the case of low column water vapor. 
Figure 6 shows that M-O is biased low at low wind 
speed. To explain this further, global maps of M-O 
biases for Ch3B in NOAA-18 with Reynolds and NCEP 
SST inputs to CRTM are shown in Figure 7, and water 
vapor and wind speed distributions in Figures 8 and 9. 
One of the differences between the two panels of 
Figure 7 is near the coasts, where the M-O biases are 
unrealistically low in case of NCEP SST. Moreover, in 
these areas, the column water vapor contents and wind 
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speed are also low as shown in Figures 8 and 9. 
These areas are associated with lower M-O biases 
and larger standard deviation for NCEP SST 
compared to Reynolds SST. Note that without 
including aerosols in CRTM, Ch3B is expected to 
have some positive M-O bias, and a smaller M-O 
does not necessarily mean a better agreement. We 
thus conclude that interpolation in the coastal area for 
NCEP SST needs to be improved, or Reynolds SST 
should be used instead as input to CRTM.     
   The next section uses the most effective 
CRTM/GFS implementation, based on consistent 
treatment of finite layers in NCEP/GFS atmospheric 
profiles, using Fresnel’s emissivity model (instead of 
black surface assumption), and using Reynolds SST 
instead of NCEP SST as input to CRTM.  
 
4. Bias in Different Retrieval Conditions    
   The objective of this section is to evaluate the M-O 
bias globally and analyze it as a function of those 
individual observational parameters that are critically 
important for the accuracy of SST retrievals. 
Validation described in this section was performed in 
the full global retrieval domain, and no data were 
withheld from these analyses. Large errors are thus 
possible in some retrieval conditions. The objective 
here was not to perform a bias correction, but rather 
comprehensively document the global variability of 
the M-O bias. 
 
4.1 Global histograms of the M-O bias 
   Figure 4 (right) shows the global mean biases are 
on the order of 0.2K, 0.35K and 0.35K in Ch3B, Ch4, 
and Ch5 and their respective standard deviations are 
less than 0.6K, 0.7K and 0.8K. Cross-platform 
consistency is best in Ch5, followed by Ch4 and Ch3B. 
This indicates that the sensor calibrations and 
spectral response functions are consistent between 
different platforms. The only exception is the anomaly 
in NOAA 16-Ch3B, which is also present in all 
following bias analyses in this section. In a similar 
study using MODTRAN-AVHRR validation (Dash and 
Ignatov, 2008), the same NOAA16-Ch3B anomaly 
was observed and attributed to a possible shift of its 
spectral response function. Below, this anomalous 
result is shown but not discussed. 
 
4.2 Environmental structure of the bias    
   The water vapor dependence of the M-O bias is 
shown in the left panel of Figure 4 and the 
corresponding global histogram of ‘W’ is shown in 
Figure 10. The M-O bias shows very close agreement 
between all four platforms, but it behaves differently in 

different bands. In Ch3B, it is rather flat and largely 
independent of water vapor, with amplitude not 
exceeding ~0.5K. However, in Ch4 and Ch5, the 
amplitude is ~0.8K, likely because these channels are 
more sensitive to water vapor. The larger biases in low 
water vapor conditions may be due to errors in SST, 
missing aerosols, and other absorbing gases. Their 
effects are expected to be larger in more transparent 
atmospheres.         
   Figure 11 shows SST dependence of M-O bias, and 
the corresponding histogram of SST distribution. Unlike 
the water vapor histogram in Figure 10, which shows 
gradual change from the center towards the wings in 
the full range of column water vapor content, SST is 
much more densely populated in the high SST range 
from 290–305K; the sample with SST<290K accounts 
for only ~15% of the total population. Despite a much 
smaller sample size at lower SSTs, the bias still shows 
remarkable cross-platform consistency. The amplitudes 
of the biases are about 0.5K in Ch3B and 0.9K in Ch4 
and Ch5, in the full SST range. The different behavior 
in the 270–280K range from that in the 280–310K 
range may be due to the fact that the AVHRR BTs are 
mainly influenced by SST in low SSTs and 
progressively more affected the near-surface air 
temperature and humidity in high SSTs.  
   Figure 12 shows the sea-air temperature difference 
(SST-AT) dependence of the M-O bias and its 
corresponding histogram. The SST-AT is mostly 
populated in the range of -2 to +4 K. In all three 
channels and in the entire SST-AT domain, the 
amplitude of the bias does not exceed 1K. The 
anomalous atmospheric conditions with large SST-AT 
differences are mainly associated with the coastal 
locations (May and Holyer, 1993) and differences in 
atmospheric and oceanic dynamics (e.g. Philip et al., 
2004). Again, good cross-platform consistency takes 
place in the whole SST-AT domain.  
   Figure 6 (right panel) shows the wind speed 
dependence of M-O bias. The corresponding wind 
speed histogram is shown in Figure 10. Good 
cross-platform consistency takes place in all three 
channels. The amplitude of the wind speed 
dependence does not exceed about 0.6K, including the 
large wind speed corresponding to a very rough sea 
surface. The newer studies suggest that the wind 
speed effect on the sea surface emissivity is smaller 
than initially thought and can be omitted when sensor 
view angle is less than 55º (Watts et al., 1996). Our 
results do not show any significant wind speed 
dependence, even in the full AVHRR view angles 
ranging from -68º to +68º. Recall that the current input 
to CRTM is bulk SST. Using skin SST may modify the 
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wind speed dependence of M-O bias, as the 
difference between the two SSTs is least predictable 
at low winds when large gradients at the surface may 
exist (Donlon et al., 2002, Emery et al., 2001).  
 
4.3 View zenith angle structure of the bias 
   In ACSPO, the full AVHRR swath from -68º to +68º 
is used. Sensor zenith angle effect the TOA radiance 
through the increased atmospheric path-length and 
decreased surface emissivity. It is critically important 
that CRTM performs uniformly in the full range of 
AVHRR view geometrics. 
   The right panel of Figure 5 shows the sensor 
zenith angle dependence and its corresponding 
histogram is shown in Figure 10. The curves are 
near-symmetrical with respect to nadir, and the 
amplitude of the biases is within 0.3K in Ch3B and 
0.5K in Ch4 and Ch5.  
 
4.4 Zonal structure of the bias 
   Global distributions of the environmental 
parameters (water vapor contents, SST, air 
temperature, pressure, and wind speed) define global 
distribution of the M-O bias. Figure 13 shows the 
global map of M-O bias for three bands in NOAA-16 
on 18 February 2007, and Figure 14 shows zonal 
dependence of the bias and the corresponding 
histogram. The bias is smallest near the equator and 
increases towards higher latitude. The cross-platform 
consistency remains good in all three bands and in 
the full latitude range.  
 
5. Time Series of the M-O Bias  
   The above analyses have demonstrated high 
accuracy and precision of the CRTM forward model 
and good cross-platform consistency. Animations of 
each type of histogram and dependence plots of the 
M-O biases for individual days from this week’s data 
have been made to evaluate the stability of this result. 
These animations are available on the NESDIS web 
site at www.orbit.nesdis.noaa.gov/sod/sst/xliang/. The 
noise in the daily data is larger because the number of 
clear-sky pixels is proportionately reduced compared 
to that of weekly data. However, the cross-platform 
consistency remains good in daily data.  
   Figure 15 shows a time series of the mean bias 
and its standard deviation for all seven days. The 
curves of the mean biases in Ch3B are flatter than in 
Ch4 and Ch5. A more stable CRTM performance in 
Ch3B is likely due to the smaller water vapor 
absorption in this band compared to the other two 
bands. The bias in Ch3B is < 0.3K, and in Ch4 and 
Ch5 it is < 0.5K. The respective standard deviations 

are about 0.6, 0.7 and 0.8K, respectively. These biases 
are very similar to those of weekly data analyses shown 
in Figure 4. The forward model thus appears precise, 
stable, and suitable for long-term monitoring of AVHRR 
BT and for physical SST retrievals. 
  
6. Discussion and Conclusions  
   CRTM is integrated into ACSPO in conjunction with 
NCEP GFS fields. It is accurate, precise, and 
computationally efficient and suitable for global 
real-time processing of large data volumes. The 
objectives of this paper were to check and improve the 
implementation of the CRTM with NCEP/GFS fields 
and to validate the accuracy of the forward model 
against AVHRR BTs. The M-O bias was evaluated as a 
function of main factors responsible for the M-O bias 
using one week of data from 16–22 February 2007.   
   With careful treatment of the NCEP/GFS fields and 
Reynolds SST in the CRTM, an accurate 
implementation is obtained and the M-O biases are 
minimized. CRTM is a highly accurate model which 
closely reproduces AVHRR BTs in Ch3B, Ch4, and Ch5 
for NOAA16-18 and MetOp-A. The M-O bias also 
shows good cross-platform consistency, in all cases. 
The M-O biases are only slightly dependent on the 
environmental parameters (column water vapor 
contents, SST, SST-AT, wind speed), sensor zenith 
angle, and latitude in all three bands of the four 
platforms. The global mean M-O biases are on the 
order of 0.2, 0.35, and 0.35K in Ch3B, Ch4, and Ch5, 
respectively. An exception is the NOAA16-Ch3B, which 
shows an anomalous behavior. Analyses of data from 
individual days show that the CRTM is stable and 
cross-platform consistencies of the M-O bias remain for 
all seven days.  
   The M-O biases tend to be positive in all bands. 
These warm biases will be reduced when the aerosol 
model is included in CRTM and the skin SST is used in 
the modeling. Minimizing cloud contamination and 
controlling the quality of input GFS will further reduce 
the M-O biases. We also consider testing this model 
with other high-resolution numerical weather prediction 
(NWP) models, such as European Center for 
Medium-Range Weather Forecasting (ECMWF) data.  
   From the current analysis, we believe that the 
CRTM/GFS implementation in ACSPO is good enough 
to start exploring physical SST retrievals. However, we 
expect that adding aerosol and reflected solar radiation 
in the CRTM will be required for accurate physical SST 
retrievals.       
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Table 1: Comparison of SVP value between Goff-Gratch (1946) approach and polynomial fit of data from 
Flatau et al. (1976) 

T (K) Flatau et al (1976) (hPa) Goff-Gratch(1946) (hPa)  (F-G)/F (%)
188 5.21E-04 4.49E-04 13.7929
198 2.48E-03 2.30E-03 7.6028
208 1.00E-02 9.64E-03 3.9012
218 3.53E-02 3.46E-02 2.0725
228 0.1105 0.1092 1.1922
238 0.3108 0.3089 0.593
248 0.7975 0.7954 0.2603
258 1.8898 1.8867 0.1647
268 4.1718 4.1640 0.1859
278 8.6408 8.6224 0.2134
288 16.9019 16.8690 0.1948
298 31.4110 31.3700 0.1305
308 55.7698 55.7408 0.0519
318 95.0715 95.0689 0.0027  
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Figure 1. The mean M-O biases in AVHRR Ch5 onboard three NOAA platforms as a function of column water 
vapor: initial implementation (left) and corrected implementation (right). The surface is black in both cases. 
One week of global data from 19–25 April 2006 is used (see discussion in section 3.1 for detail).  
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Figure 2. The same as in Figure 1 but for three AVHRR bands onboard four platforms: black surface (left) and 
Fresnel’s surface (right). One week of global data from 16–22 February 2007 is used. The amplitude of the water 
vapor dependence is smaller for Fresnel’s model.  
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Figure 3. The same as in Figure 2 but as a function of view zenith angle. The M-O bias and its amplitude  
are consistently smaller when Fresnel’s surface model is used.  
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Figure 4. Global histograms of the M-O bias for the week of 16–22 February 2007: NCEP-SST (left) and 
Reynolds-SST (right). For Reynolds SST, the histograms are consistently narrower than for NCEP SST. 
Respective mean biases are 0.18–0.26 versus 0.05–0.11 K in Ch3B; 0.32–0.50 versus 0.24–0.37 K in Ch4; 
and 0.28–0.33 K versus 0.20–0.37 K. Respective standard deviations are 0.49–0.58 versus 0.76–0.87 K in 
Ch3B; 0.65–0.69 versus 0.80–0.88 K in Ch4; and 0.74–0.78 versus 0.84–0.90 k in Ch5.  
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Figure 5. Left: the same as in Figure 2 (right). Right: the same as in Figure 3 (right) but for Reynolds SST. 
Water vapor and view zenith angle dependencies improve if Reynolds SST is used instead of NCEP SST. 
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Figure 6. The same as in Figure 5 but as a function of wind speed. Left: NCEP SST; right: Reynolds SST. The 
amplitude of the wind speed dependence is significantly reduced in case of Reynolds SST. (See discussion in 
section 3.3.) 
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Figure 7. Global distribution of M-O biases for NOAA18-Ch3B for one day of 18 February 2007. Left: Reynolds-SST; right: 
NCEP-SST used as input to CRTM.  

 

 

Figure 8. Global distribution of wind speed corresponding    Figure 9. Global distribution of column water vapor                      
to Figure 7.                                               corresponding to Figure 7.        
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Figure 10. Histograms of column water vapor (upper left, bin size=0.5g/cm2), sensor zenith angle (upper right, bin 
size=10º) and wind speed (down left, bin size=1m/s) corresponding to Figures 5 and 6 (right), respectively. 

 



 
Validation of CRTM against AVHRR in ACSPO at NESDIS  Page 17 of 21 

88th AMS Annual Meeting, 5th GOES Users' Conference, 20–24 January 2008, New Orleans, LA 
 

 

   Figure 11. SST dependence of the M-O bias and SST histogram with bin size 3K.  
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Figure 12. Sea-air temperature difference dependence of M-O bias and corresponding SST-AT histogram (bin size 1K). 
(AT = near-surface air temperature) 
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Figure 13. Global maps of M-O biases for NOAA-16 in three AVHRR bands in 18 February 2007.  
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Figure 14. Zonal dependence of M-O bias and its histogram (bin size: 10º) for one week of 16-22 February 2007. 

 

 

 



 
Validation of CRTM against AVHRR in ACSPO at NESDIS  Page 21 of 21 

88th AMS Annual Meeting, 5th GOES Users' Conference, 20–24 January 2008, New Orleans, LA 
 

     

Figure 15. Time series of the (left) mean M-O bias and (right) RMSD for one week of global observations from 16–22 February 
2007.  
 

 


