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1.  INTRODUCTION
   
     Weather forecasts using statistical equations derived 
from  observational  data  are  of  utility  to  a  variety  of 
users.  For  example,  traders  at  utility  companies 
incorporate forecasts to decide whether to buy or sell 
electricity  on  the  open  market.  Moreover,  energy 
companies continually project the electricity usage, or 
“load,” for their customer domain. 
     The natural question, then, is how best to obtain the 
most accurate short-term temperature forecasts? There 
are  a  few  short-term  forecasting  products  available. 
One product is the recently developed National Digital 
Forecast  Database  (NDFD).  It  is  generated  by  the 
National  Weather  Service  (NWS)  and  offers  model 
forecasts every three hours for an array of grid boxes 
(NDFD 2004). 
      Although  not  forecasts,  available  from  AWS 
Convergence  Technologies,  Inc.  (AWS),  a  private 
corporation,  are  high-resolution  observations  for  over 
8000 sites across the country (AWS 2007). 
     This project’s objective is to assess quantitatively the 
improvement  of  short-term NDFD model  forecasts  by 
incorporating  AWS  observations  using  statistical 
forecast equations via multiple linear regression. 
      Three variables pertinent to load forecasting are 
tested: temperature, dew point,  and wind speed. Dew 
point  is  more  relevant  during  the  summer  as  it 
correlates to air-conditioning use, while wind speed is 
more relevant during the winter with respect to heating 
efficiency.   
      This  study  will  also  explore  the  magnitude  of 
forecast improvement as a function of AWS observing 
location  (i.e.,  siting).  It  is  hypothesized  that  AWS 
observations  would  provide  the  greatest  benefit  to 
NDFD model forecasts for predictions at AWS weather 
stations located in higher elevations or next to water, as 
examples.  This  idea  stems  from  the  premise  that 
numerical  computer  models  do  not  have  the  spatial 
resolution to account for these local effects. 

2.  DATASETS AND THEIR ROBUSTNESS

Hourly  AWS observations  and  NDFD forecasts  were 
compiled for the 1-year period 15 April 2006 to 14 April 
2007.  Seventeen  AWS  stations,  shown  in  Table  1, 
representing  a  variety  of  locations,  climates,  and 
elevations were tested. 
      Stations  BRTTN,  MTQCR,  and  MELBA  were 
chosen because of their higher elevations, and RBBPH, 
WIVBT, and SEASF because they are in proximity to 

Corresponding author’s  address: Joby L.  Hilliker,  223 
Boucher  Building,  West  Chester  University,  West 
Chester, PA 19382; e-mail:  jhilliker@wcupa.edu

water  sources.  Stations  PHLRH  and  KPEAE  were 
chosen  as  controls  because  they  lie  in  more 
homogenous terrain with no obvious local events.

AWS 
Identifier

Station
Name

Station
Location

Elevation 
(feet)

BRTTN
Bretton 

Woods Ski 
Resort

Bretton 
Woods, NH 1636

LRAY1
Shenandoah 
National Park

Big 
Meadows, 

VA
3450

PHLRH Rohm and 
Haas

Spring 
House, PA 320

RBBPH Boardwalk 
Plaza Hotel

Rehoboth 
Beach, DE 52

WIVBT WIVB-TV
Buffalo,

NY 655

RCHSC
Seton 

Catholic High 
School

Richmond, 
IN 935

CHC04 LaSalle Bank 
Building

Chicago, 
IL

592

CHINM
P. Notebaert 

Museum
Chicago, 

IL 587

CHCG5 De La Cruz
School

Chicago, 
IL 594

CHC09
Hammond 

Elem School
Chicago, 

 IL 594

CURIE Curie Metro 
High School

Chicago, 
 IL 600

BRRRD
Burr Ridge 

Middle School
Burr Ridge, 

IL 696

WNTRE Wintergreen 
Mountain

Wintergreen, 
VA 3373

MTQCR
Crested Butte 

Mtn Report
Crested 

Butte, CO 9327

MELBA Dans Ferry 
Service

Melba, 
ID 2799

SEASF KING5 at 
SAFECO field

Seattle, 
WA 66

KPEAE
Peabody-
Burns ES

Peabody, 
KS 1388

Table  1.  Summary  of  AWS  station  identifiers  with 
elevation data. 



      Because this system’s success stems from the 
strength  of  statistical  signals,  it  is  critical  that  the 
number  of  cases  with  bad  and/or  missing  data  be 
minimized.  AWS archives were generally  of  excellent 
quality, with the percentage of missing data <5% for the 
majority of stations. 
      Because NDFD forecasts are gridded (resolution 
.05º),  NDFD forecasts  were chosen to  correspond to 
the grid box in which each AWS station lies. Also, in its 
current format, NDFD forecasts are valid every 3 hours, 
and updated in 3-hr intervals, starting at 00Z. Although 
forecasts  are  disseminated  hourly,  the  following  two 
hours’  forecasts  (those  made  at  01Z  and  02Z,  for 
example)  are  essentially  a  repeat  of  the  original 
forecast  (the  00Z forecast,  to  continue  this  example) 
until an update is made the subsequent hour (03Z, to 
complete  the  example).  Table  2  summarizes  the 
relationship between forecast hours and corresponding 
lead times tested.

FORECAST HOUR (Z)
LEAD TIME

 (HOURS)
00,03,06,09,12,15,18,21 3, 6, 9, 12
01,04,07,10,13,16,19,22 2, 5, 8, 11
02,05,08,11,14,17,20,23 1, 4, 7, 10

Table 2. Relationship between forecast hour and lead 
times.
 
     The NDFD archive was also of excellent quality. Of 
the 8760 possible NDFD forecasts in the database, 581 
(<7%) were missing.

3.  STATISTICAL DESIGN

       Hourly forecasts of temperature, dew point, and 
wind speed were made for 1-12 hours in the future for 
each AWS station, with the predictand simply the AWS 
observation at verification time.
       Because all  three parameters exhibit  a diurnal 
pattern,  statistical  forecast  equations  were  developed 
for  each  forecast  hour.  This  strategy  becomes 
imperative  when  one  examines  NDFD  model  bias. 
Figure 1 shows NDFD model bias for five selected AWS 
sites for temperature (top), dew point (middle), and wind 
speed (bottom).
       The most significant NDFD bias is with temperature 
at  two  AWS  mountain  sites:  BRTTN  and  MTQCR. 
Specifically,  a significantly cold bias exists during the 
overnight hours (03-11Z), but markedly shifts to a warm 
bias during the afternoon. Also evident in Fig. 1a is a 
warm NDFD bias at CHC04 apparent only during the 
daytime.  This  pattern  is  perhaps  attributable  to  the 
cooling afternoon lake breeze that the Chicagoan site 
may experience, particularly during the spring when the 
lake is relatively cold.
      NDFD dew point  bias  is  not  as  significant  as 
temperature, but still exhibits a diurnal trend. A dry bias 
is  apparent  during  the  nighttime  hours.  Several 
intriguing  observations  can  be  made  about  the  wind 
speed bias.  First,  a fast  wind speed bias (of  order 1 
MPH) is evident for all sampled stations for all hours. 
The model’s fast bias may be attributed to AWS siting. 

Unlike airports with few obstructions, most AWS sites 
are located atop buildings with surrounding structures 
and trees, which would retard the wind speed. Building 
heights may also be lower than the 10-m height  that 
wind  speeds  are  typically  observed  and  forecast. 
Secondly, note there is a less marked diurnal trend in 
the model wind speed bias. It is likely NDFD is more 
successfully  handling  the  diurnal  component  that 
naturally exists with this parameter. 
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Fig.  1.  Hourly  bias of  NDFD temperature,  dew point, 
and wind speed forecasts for selected AWS stations.

      Table 2 lists the candidate predictors considered in 
the  system.  The  most  obvious  predictors  to  include 
were  the  most  recent  AWS observation  and  suite  of 
NDFD forecasts of the particular parameter. Additional 



variables,  such  as  the  most  recent  relative  humidity, 
precipitation,  and  past  observations  of  the  forecast 
parameter, were also considered.

PREDICTOR NOTATION
Current Temperature T0

Temperature from 1 Hr Ago T-1

Temperature from 2 Hr Ago T-2

Current Relative Humidity RH0

Current Dew Point TD0

Current Wind Direction DD0

Current Wind Speed FF0

Current Precipitation
(Yes/No Binary Predictor)

P0

Current U-component of Wind U0

Current V-component of Wind V0

NDFD 1-3 Hr Forecast NDFD1-3

NDFD 4-6 Hr Forecast NDFD4-6

NDFD 7-9 Hr Forecast NDFD7-9

NDFD 10-12 Hr Forecast NDFD10-12

Table 2. Description of candidate predictors tested, and 
their notations.

      Both  the  AWS and NDFD data  archives  were 
divided  into  two  datasets.  The  first  was  a  larger 
(“dependent”)  dataset  from  which  the  most  powerful 
predictors for short-term temperature forecasting were 
derived, and then linked using multiple linear regression 
to  form  statistical  forecast  equations.  The  statistical 
software package  S-PLUS was used to ascertain  the 
most  powerful  predictors,  with  a  forward  stepwise 
regression  (“efromyson”)  applied  using  an  f-value 
threshold of 10.
     Forecast equations were then applied to the smaller 
“independent”  dataset  to  generate  new  temperature 
forecasts. These modified NDFD forecasts are referred 
to  as  NDFD+  forecasts,  hereafter.  The  size  ratio 
between the  dependent  and  independent  datasets  is 
typically 3 to 1. Thus, days 1-23 of each month were 
dedicated to the dependent set, with the balance of the 
month committed to the independent data set. 

4.  RESULTS FROM DEPENDENT DATA

      Table 3 shows a sampling of the final predictors -- 
temperature (top,  for  CHC04),  dew point  (middle,  for 
CHINM),  and  wind  speed  (bottom,  for  CURIE)  -- 
included in the forecast equations. Predictors are listed 
in  order  of  benefit,  with  the  first  predictor  the  most 
highly correlated to AWS verification. The nature, order, 
and  number  of  predictors  (typically,  2-5)  were 
consistent with other AWS stations. 
       It  is  intuitive  that  the  majority  of  the  chosen 
predictors are NDFD model output. The most beneficial 
NDFD  forecasts  are  those  that  correspond  to  the 
forecast lead time (i.e.,  NDFD7-9 for a 9-hr lead time), 
although there are exceptions (e.g., NDFD4-6 for a 12-hr 
00Z CHC04 temperature forecast). 

       The  remaining  predictors  come  from  AWS 
observations, confirming the benefit of an observations-
based forecast system. There is also the trend for the 
most  recent  AWS  observation  to  be  weighted  more 
heavily  for  shorter  lead  times,  with  NDFD  output 
emphasized for longer lead times. 
       A  notable  exception,  however,  are  the  most 
powerful variables for forecasting wind speed. For a 3-
hr lead time, the most recent wind speed observation, 
in  general,  is  not  the  top  predictor.  In  fact,  there  is 
virtually  no  presence  of  supplemental  AWS 
observations beyond 6 hrs. This result provides the first 
insight into the limited ability of short-term wind speed 
forecasting  using  an  obs-based  system.  This  is  not 
surprising, however, given the higher variability of this 
parameter as compared to temperature or dew point.
      One additional observation is the frequent presence 
of  U0,  the  east-west  component  of  the  wind,  as  a 
beneficial  predictor  for  forecasting  dew  point  for 
CHINM, a site located 12 km from Lake Michigan. This 
result  is  encouraging  in  that  the  forecast  system  is 
confirming  a  relationship  between wind  direction  and 
moisture content of this Chicago site. 

TEMPERATURE – CHC04
Fore-
cast
Hour 
(Z)

3-hr
Lead 
Time

6-hr
Lead 
Time

9-hr
Lead 
Time

12-hr
Lead 
Time

00 T0,  
NDFD10-12

T0,  
NDFD10-12, 

FF0

NDFD4-6,  
T0, TD0

NDFD4-6,  
RH0

DEW POINT – CHINM
Fore-
cast
Hour 
(Z)

3-hr
Lead 
Time

6-hr
Lead 
Time

9-hr
Lead 
Time

12-hr
Lead 
Time

12
TD0,  

NDFD4-6

NDFD4-6,  
TD0, U0 

NDFD7-9,  
U0, TD0

NDFD10-12, 

U0, T0

WIND SPEED – CURIE
Fore-
cast
Hour 
(Z)

3-hr
Lead 
Time

6-hr
Lead Time

9-hr
Lead Time

12-hr
Lead 
Time

00
NDFD1-3, 

FF0, V0,  
NDFD7-9

NDFD7-9,  
FF0, V0

NDFD7-9,  
U0

NDFD10-12, 
NDFD7-9

Table 3. A sampling of the most powerful predictors as 
a  function  of  forecast  hour  and  lead  time  for 
temperature, dew point, and wind speed forecasting for 
CHC04,  CHINM,  and CURIE,  respectively.  Predictors 
are  listed  in  order  of  decreasing  power.  Predictor 
notation is referenced in Table 2.

5.  RESULTS FROM INDEPENDENT DATA

     Forecast  equations  containing  the  above  final 
predictors  were  applied  to  generate  modified  NDFD 
(NDFD+,  hereafter)  forecasts.  To  assess  forecast 



improvement, the mean absolute error (MAE) between 
the NDFD+ forecasts  and verification (i.e.,  the actual 
AWS observation) were calculated.  This  methodology 
was repeated for each of the three parameters.
      Figure 2 shows the mean absolute temperature and 
wind speed error for CURIE as a function of lead time, 
averaged over the eight forecast hours from Table 1. 
      The average NDFD+ temperature error is 1.1°F at 1 
hr and increases logarithmically to 3.1°F by 12 hrs. For 
reference, the MAE of the original NDFD forecasts, 3.2°
F regardless of lead time, is also depicted. Results for 
dew  point  at  CURIE  (not  shown)  are  similar  to 
temperature in both magnitudes and pattern. 
      For wind speed, the mean NDFD forecast error was 
2.2 MPH. By incorporating AWS observations, the MAE 
dropped  to  1.7  MPH  at  the  1-hr  lead  time  to  trivial 
improvements beyond 6 hr.
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Fig.  2.  Mean  absolute  temperature  and  wind  speed 
error  between  verification  and:  a)  NDFD+  forecasts 
(dashed  line),  and  b)  original  NDFD  forecasts  (solid 
line) as a function of lead time for CURIE.

Alternatively,  the  percent  improvements  of  NDFD+ 
forecasts  over  those  of  the  original  NDFD  can  be 
shown. Figure 3 shows these percent improvements as 
a function of lead time for all tested AWS stations. The 

black solid line in each figure represents an average 
over all sites.
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Fig. 3. Percent improvements of NDFD+ forecasts over 
original NDFD forecasts for temperature, dew point, and 
wind speed as a function of  lead time for each AWS 
station.  The  black,  solid  line  in  each  figure  is  an 
average over all tested AWS stations.

      Several points can be gleaned from Fig. 3. It is 
stressed,  however,  that  the  improvements  above  will 
not be as great (exceptions being the 3-, 6-, 9-, and 12-
hr lead times) once NDFD forecasts are updated hourly.
      Percentage improvements for temperature and dew 
point, when averaged over all stations, are comparable 
in  magnitude.  Improvements  are  greatest  at  the  1-hr 
lead time at 60-70%, decrease exponentially to 15-25% 
at the 6-hr lead time, and are trivially skillful by 12 hrs. 
      A more careful analysis, though, reveals differences 
in  improvements  with respect to  location.  The skill  in 



forecasting  temperature  is  greatest  for  MTQCR, 
BRTTN, LRAY1, and WNTRE. Table 1 reveals these 
four sites are a subset of the five highest elevation sites 
tested. This result furthers the suggestion that an obs-
based system is of greatest utility when adjusting NDFD 
temp forecasts in rugged or higher-altitude locations.
      Spread in skill among stations is also evident with 
dew  point,  but  with  individual  stations  behaving 
differently. There continues to be a correlation -- albeit 
weaker with dew point -- between NDFD+ performance 
and altitude as two (MTQCR, MELBA) of the three most 
skillful sites are located > 2500 ft. 
      An exponential decrease in skill is also evident with 
wind  speed;  however,  overall  NDFD+  forecast 
improvements  are  markedly  lowest  of  the  three 
parameters.  Improvements  average  20%  at  the  1-hr 
lead time and fall below 10% by 4 hr. In fact, some wind 
speed predictions were worsened by the inclusion of 
AWS observations – a testament of the high variability, 
and thus low predictability, of wind speed.
      A notable amount of spread in skill among stations 
is  also  evident  with  wind  speed,  with  the  obs-based 
system showing forecast skill for longer lead times for a 
few (KPEAE, CHC04, RBBPH) of the tested stations. 
One commonality with these sites is their proximity to 
water.  Local  effects  (e.g.,  lake  breeze)  are  likely 
influencing  the  wind  speed,  allowing  an  obs-based 
system to again demonstrate its strength.

6.   CONCLUSIONS
   
     The  results  from  this  grant  provided  several 
encouraging results  in  determining the utility  of  AWS 
observations  in  improving  short-term  NDFD  model 
temperature, dew point, and wind speed forecasts. For 
the  first  experiment,  a  sample  of  17  AWS sites  was 
chosen located in varying terrain and proximity to water 
to  test  the  influence  of  AWS  physical  location  on 
forecast  improvement.  For  the  second  experiment, 
observations from nearby AWS sites were included in 
the  pool  of  candidate  predictors  to  determine  if 
additional  NDFD+  forecast  improvement  can  be 
generated. 
      The main conclusions from this study are: 
 

•The incorporation of AWS observations decreased the 
MAE of original NDFD forecasts by 60-70% at the 1-hr 
lead time, dropping exponentially to ~20% at 6 hrs, and 
are only trivially superior by 12 hr.

•Higher altitude stations, where local effects dominate 
and  whose  locations  may  not  be  well  modeled, 
generally  exhibited  the  highest  forecast  skill  for 
temperature and dew point.

•Dew point results were similar to temperature in both 
final  predictor  type  (i.e.,  the  most  recent  dew  point 
observation the top predictor for short lead times) and 
magnitudes of improvement.

•Thus, it is expected NDFD+ forecasts of heat index will 
have comparable percent improvements to temperature 
and dew point.

•NDFD forecasts  have  a  fast  bias  with  wind  speed, 
likely the result of AWS siting.

•Because  of  wind  speed’s  higher  variability,  NDFD+ 
improvements were significantly lower than temperature 
or dew point:  20% improvement for a 1-hr lead time, 
and trivial superior in as little as 4 hrs. 

•Stations  located  next  to  water,  where  again  local 
effects  dominate,  generally  showed  the  highest  wind 
speed forecast skill.

•NDFD+  forecasts  of  wind  chill  will  likely  have  skill 
inferior  to  temperature  or  heat  index  because  of  the 
inherent limitations in predicting wind speed.

      This study provides additional support for which 
future  projects  involving energy and utility  companies 
are  possible.  One  logical  extension  would  be  to 
construct  a  prototype  forecast  system  that  outputs 
short-term  temperature,  dew  point,  and  heat  index 
forecasts  similar  to  the  NDFD+  forecasts  generated 
here.  Locations  with  pronounced  local  effects  (e.g., 
higher altitude, proximity to water) are ideal for applying 
an AWS observations-based system to improve original 
NDFD forecasts. 
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