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1. INTRODUCTION

The weather signal’s autocorrelation function
is (i.e. Eq. (1) of Fang and Doviak 2005)

R(T, 7y ) = Z E[Ak*(O)Ak (T)Fk* (0’ T )FA (T> Ty )"ﬁvmwu ] (l)’

where 1 is lag time, 4; the complex amplitude of
voltage echoed from the &” particle, F the weight
imposed on A" particle due to the radar beam
pattern, V, the radial velocity of the &” particle,
and A is the wavelength of electromagnetic wave
transmitted by radar. “ * ” in (1) denotes the

complex conjugate, and E denotes the expectation
operation. 170 , locates the center of Vy, and is a

function of time if antenna is rotating. If the
oscillation or/and wobbling of a hydrometer is
independent from its radial velocity, starting from
this equation, Fang and Doviak (2005) show that
the integral form of the correlation function for a

stationary beam can be written as (i.e. their Eq.

(7)

R(e.7)= [ 1707 )p, (e.F)E [e 7+ 1y

Vv

2),

where

(T ) E[4(0, F)A(Z, 7] 3),
E,[4(0.7) ]

E, denotes an average over an ensemble of
velocities, whereas E, denotes an average over the
ensemble of hydrometer’s back scattering cross

sections. However, for a vertically pointed radar, a
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hydrometer’s oscillation or/and wobbling could
correlate to its radial velocity because the larger
hydrometers could have larger oscillation and
faster terminal velocity. Going through the steps
from Eq. (1) to Eq. (7) given by Fang and Doviak
(2005), one can rewrite Eq. (2) as

Rer0)= [ 1. FY(F)E o, (e. 7. 20 Jay - (4
,,

where we use the overbar to emphasize the
autocorrelation function is an integral volumetric
mean weighted by radar beam pattern and
reflectivity. Because we are assuming a vertically
pointed beam and the vertical wind component to
be zero, the radial velocity in Eq. (2) reduces to

the terminal velocity V, in Eq. (4).

Starting from Eq. (4), this study will show that
an analytical expression for the Doppler spectrum
is related to the drop’s terminal velocity and size
distribution if there is a unique relationship
between drop’s diameter and its terminal velocity.
The derivation does not require drop size
distribution to be homogeneous. This generalized
expression reduces to previously derived
expression if drop size distribution is uniform.

2. THE EQUATION FOR DOPPLER
SPECTRA RELATED TO TERMINAL
VELOCITY

The corresponding correlation coefficient of
Eq. (4) is
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Fourier transforming the above equation over tau
one obtains the weighted normalized Doppler

spectrum of terminal velocity. That is
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where F denotes the Fourier transform over

time lag domain. The part relating to Fourier
transform in the numerator of the above equation

is the unweighted normalized Doppler spectrum at

7o, ie. Smd(v,f,t) which relates to the

hydrometers in a unit volume at 7 . It has been
shown that the power scattered by a hydrometer to

the antenna is proportional to the backscatter cross

[ 107, 7 h(F)av

(6),

drops in elemental volume 4V having a terminal

velocity Vi, and

p(F,vd,z)ab(vd)de NEWOdY  is  the

corresponding total back scattering cross section

of hydrometers with terminal velocity v, in the
elemental volume dV at 7, where N(7,v,t) is

DSD at 7 in velocity domain. The total back

scattering cross section of all hydrometers in dV’

section of the hydrometer, i.e. Eq. (3.24) of . _ _ .
Y e (3:29) is n(r)dV. Thus, S, (v,r) can be rewritten

Doviak and Zrni¢ (1993). If p(7¥,v,,t)is the

as
probability density of a drop having terminal
velocity vy at 7, p(F,v,,0)dV [ N(F,v,0)dv

is the number of

P(F.v,,00,(0) [ N, v, t)dv
n(7) 7

independent of time. In the domain of drop size

S

(vd,F,t =

In order to simplify the discussion, we assume the

DSD is statistical stationary. That is, both p and N diameter, Eq. (7) can be rewritten as

arc

p(7, D)o, (D)[:;D]j N(#,D)dD
S od (Vd ’ F) = ‘jd ®),
n(F)

where we  have used the  relation and its terminal velocity. Thus, from Egs. (6)-(8)

- - th ighted lized Doppl tr i
p(r,D)dD = p(¥,v,)dv, and assumed there ¢ Welghied normalizec Hoppier spectiim n

terms of terminal velocity is

is a unique relationship between drop’s diameter
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and in terms of drop’s diameter is
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N(7,D)dD represents the number of drops

whose diameters fall in between D + dD in a unit

volume at 7 . It is easy to see that
00

J- N(7,D)dD is the total number of drops in
—o0

a unit volume at 7 . It is also easy to understand

that the ratio of N(7,D)dD to

N(7,D)dD

" N D)dD, ic.
[ vy i [ N(.D)aD

, is the

probability that the diameter of a drop lies
between D + dD. Thus, the normalized drop size

N(7,D)dD

distribution, ie. ———————— , is

[ N(.D)iD
probability density function which defines the
probability of a drop falling in unit interval around

D at location 7 in drop’s diameter domain. Thus

[ 1.7 (F)av
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(10).

N(v,,7)= N(F,D)(fl—Dj (12),

1%

in velocity domain we have

. N (v N )

p(Fv,) =
I N(v,,7)dv,

0

(13).

Substituting (11) into (10) for a uniform DSD, and
therefore a uniform reflectivity, Eq. (10) reduces

to

o, (D)N(D)(jf}

(14)

Snod (vd ) = 77

This is exactly the Eq. (8.77) given by Doviak and
Zrni¢ (1993). However, if DSD is not uniform, the
weighted normalized Doppler spectrum from a

unit volume at 7 should be read as

dD

d

we have
- N@#,D
p(F,D)=——-—"—"— (7, D) (11).
[N, D)dD
0
Because
Snod (vd H }_;) =

Ve

weather radar presents a volumetric weighted

version of (15). In this case, the radar measured

[ 1 e

(15).

spectrum due to an inhomogeneous distribution of

terminal velocities is
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Therefore, with the work presented this
chapter, we have derived a general analytical
Doppler spectrum expression for terminal velocity,
and shown that the previously derived equation,
i.e. Eq. (14), is a result of Eq. (16) when DSD is

uniform.

3. CONCLUSIONS

This study obtains a generalized analytical
expression for Doppler spectra related to the
terminal velocity with non-uniform drop size
distribution. If drop size distribution is uniform,
this generalized equation reduces to a previous

derived expression.

References

Doviak, R. J. and D. S. Zrnic, 1993: Doppler
radar and weather observations. Academic
Press, Inc., San Diego. 453 pp.

Fang, M., R. J. Doviak, 2005: Corrections to and
considerations of the spectrum width equation.
Preprints, 32nd Conference on Radar
Meteorology, Albuquerque, NM, USA, AMS,
CD-ROM, P4R.2.



