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1. INTRODUCTION  
 

The weather signal’s autocorrelation function 
is (i.e. Eq. (1) of Fang and Doviak 2005)*
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where τ is lag time, Ak the complex amplitude of 
voltage echoed from the kth particle, Fk the weight 
imposed on kth particle due to the radar beam 
pattern, Vk the radial velocity of the kth particle, 
and λ is the wavelength of electromagnetic wave 
transmitted by radar. “ * ” in (1) denotes the 
complex conjugate, and E denotes the expectation 

operation. , locates the center of V0r 6, and is a 

function of time if antenna is rotating. If the 
oscillation or/and wobbling of a hydrometer is 
independent from its radial velocity, starting from 
this equation, Fang and Doviak (2005) show that 
the integral form of the correlation function for a 
stationary beam can be written as (i.e. their Eq. 
(7))  
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Ev denotes an average over an ensemble of 
velocities, whereas Eμ denotes an average over the 
ensemble of hydrometer’s back scattering cross 
sections. However, for a vertically pointed radar, a 
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hydrometer’s oscillation or/and wobbling could 
correlate to its radial velocity because the larger 
hydrometers could have larger oscillation and 
faster terminal velocity. Going through the steps 
from Eq. (1) to Eq. (7) given by Fang and Doviak 
(2005), one can rewrite Eq. (2) as 
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where we use the overbar to emphasize the 
autocorrelation function is an integral volumetric 
mean weighted by radar beam pattern and 
reflectivity. Because we are assuming a vertically 
pointed beam and the vertical wind component to 
be zero, the radial velocity in Eq. (2) reduces to 
the terminal velocity Vd in Eq. (4).  
 Starting from Eq. (4), this study will show that 
an analytical expression for the Doppler spectrum 
is related to the drop’s terminal velocity and size 
distribution if there is a unique relationship 
between drop’s diameter and its terminal velocity. 
The derivation does not require drop size 
distribution to be homogeneous. This generalized 
expression reduces to previously derived 
expression if drop size distribution is uniform. 
2. THE EQUATION FOR DOPPLER 

SPECTRA RELATED TO TERMINAL 
VELOCITY 
The corresponding correlation coefficient of 

Eq. (4) is 
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          (5). 

Fourier transforming the above equation over tau 
one obtains the weighted normalized Doppler 
spectrum of terminal velocity. That is 
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where  denotes the Fourier transform over 

time lag domain. The part relating to Fourier 
transform in the numerator of the above equation 
is the unweighted normalized Doppler spectrum at 

F~

r , i.e. ( trvSnod ,, )  which relates to the 

hydrometers in a unit volume at r .  It has been 
shown that the power scattered by a hydrometer to 
the antenna is proportional to the backscatter cross 
section of the hydrometer, i.e. Eq. (3.24) of 

Doviak and Zrnić (1993). If ),,( tvrp d is the 

probability density of a drop having terminal 

velocity vd at r , ∫ dvtvrNdVtvrp d ),,(),,(  

is the number of  
 

ume dV having a terminal 
vd, and

drops in elemental vol
velocity  

∫ dvtvrNdvtvrp )(),,( Vdbd ),,(σ  is the 

meters with term

elemental volume dV at 

corresponding total back scattering cross section 
of hydro inal velocity vd in the 

r , where tN ),,( vr  is 

DSD at r in velocity domain. The total back 
scattering cross section of all hydrometers in dV  

is ( )dVrη . Thus, ( )rvSnod ,  can be rewritten 

as 

( ) ( )r
d dvtvrNvtvrp b

trvS
d

dnod =,,

In o

η

σ ),,()(),,(

rder to simplify the discussion, we assume the 
DSD is statistical stationary. That is, both p and N 
are 

independent of time. In the domain of drop size 
diameter, Eq. (7) can be rewritten as 

∫
                        (7). 
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where we have used th

dd= and assumed there 

and its terminal velocity. Thus

is a unique relationship between drop’s diameter 

, from Eqs. (6)-(8) 
the weighted normalized Doppler spectrum in 
terms of terminal velocity  is 
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and in terms of drop’s diameter is   
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dDDrN ),(  represents the number of drops 

whose diamete fall in between D + dD in a unit rs 
volume at r . It is easy to see that 
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a unit volume at 

∞
 is th

r . It is also and 
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probability de sity function which defines the 
probabilit

n
y of a drop falling in unit interval around 

D at location r  in drop’s diameter domain. Thus 
we have 
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in velocity domain we have 
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Substituting (11) into (10) for a uniform DSD, and 
therefore a uniform reflectivity, Eq. (10) reduces 
to 
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This is exactly the Eq. (8.77) given by Doviak and 
Zrnić (1993). However, if DSD is not uniform, the 
weighted normalized Doppler spectrum from a 
unit volume at r should be read as 
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Because  
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weather radar presents a volumetric weighted 
version of (15). In this case, the radar measured 

 an inhomogeneous distribution of 
terminal velocities is 
spectrum due to
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Therefore, with the work presented this 
chapter, we have derived a general analytical 
Doppler spectrum expression for terminal velocity, 
and shown that the previously derived equation, 
i.e. Eq. (14
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), is a result of Eq. (16) when DSD is 
niform.  

. CONCLUSIONS 
 

tion reduces to a previous 
deri  expression.  
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This study obtains a generalized analytical 
expression for Doppler spectra related to the 
terminal velocity with non-uniform drop size 
distribution. If drop size distribution is uniform, 
this generalized equa

ved
 

 
iak, R. J. and D. S. Zrnic, 1993:  Doppler 
radar and weather observatio
Press, Inc., San Diego. 453 pp. 
, M., R. J. Doviak, 2005: Corrections to and 
considerati ns of the spectrum width equation. 
Preprints, 32nd Conference on Radar 
Meteorology, Albu

 

 4


