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1. INTRODUCTION

The temporal and spatial vegetation dynamics is
highly dependent on many different environmental and
biophysical factors. Among these, climate is one of the
most important factors that influence the growth and
condition of vegetation (Propastin et al., 2006). The
complexity of the relationships between vegetation and
climate; climate and oceanic dynamics; and the impacts
of the combination of ocean-atmosphere interaction on
vegetation result in a huge challenge in monitoring
drought patterns and its temporal and spatial effects on
vegetation.

Traditionally, climate-based drought indicators
such as the Palmer Drought Severity Index (PDSI) and
Standardized Precipitation Index (SPI) have been used
for drought monitoring (Wilhite, 2000; Hayes et al.,
1999; Wells et al., 2004). However, most climate-based
drought monitoring approaches have a limited spatial
precision at which drought patterns can be mapped
because the indices are calculated from point-based,
meteorological measurements collected at weather
station locations. In addition, weather stations are
scarce in remote areas and not uniformly distributed. As
a result, most climate-based drought indices maps
depict broad-scale point-based data using statistical-
based spatial interpolation techniques and the level of
spatial detail in those patterns is highly dependent on
the density and distribution of weather stations.
Therefore, climate-based drought indices can be
enhanced through integration with remote sensing data
to be useful for local-scale drought planning and
monitoring activities. 

Remotely sensed data from the Advanced Very
High Resolution Radiometer (AVHRR) have been widely
used to monitor vegetation over large areas with
relatively higher spatial resolution (e.g., 1-km, 4-km, and
16-km) than the climate data sets commonly used for
drought monitoring (DeBeurs and Henebry 2004;
Townshend et al. 1987; Tucker et al. 1985). Several
studies indicated that remote sensing data has become
a common process in quantitative description of
vegetation cover that can be used to address temporal
and spatial relationships between climate and vegetation
including the eventual lagged relationships of climate
(e.g., precipitation and temperature) to vegetation
response  (Camberlin  et al., 2007;  Groeneveld   and
__________________________
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Baugh, 2007; Anyamba and Tucker, 2005; Seaquist et
al., 2005; Roerink et al.,2003). This quantitative
description of vegetation can be used to identify and
predict the vegetation stress during drought. In addition,
satellite observations are a valuable source of timely,
spatially-continuous information for monitoring
vegetation dynamics and conditions. Thus, recent
advances in remote sensing observations,
improvements in the spatial and temporal coverage of
weather stations, and improved computational
capabilities and statistical analysis techniques have
enhanced our capabilities to monitor drought and project
its impact on vegetation conditions over large
geographic areas. 

Studying past and present droughts in relation to
climatological, oceanic, and atmospheric parameters
could help mitigate future drought impacts on society by
improving our understanding of the drought hazard
(Tadesse et al, 2005a). Improvements in short-,
medium-, and long-range climate predictions enhance
our capability to monitor vegetation conditions and
develop better drought early warning and knowledge-
based decision support systems. However, the
complexities of drought characteristics, as well as the
highly variable temporal and spatial relationships of
climate-vegetation interactions, make the prediction of
drought and its impacts on vegetation very challenging.
Because of this, for better vegetation monitoring and
more accurate assessment of the impacts of drought, a
better understanding of how long it takes for a
vegetation to respond after a precipitation event
occurred is essential (Camberlin et al., 2007; Diodato,
2007; Foody, 2003; Goward and Prince, 1995). In
addition, determining how this precipitation-vegetation
response relationship varies both in space and time (i.e.,
geographically and across the growing season) is a
fundamental research question to improving drought
monitoring and prediction. The overall objective of the
study was to assess the nature of temporal and spatial
relationships between climate (e.g., precipitation and
temperature), oceanic dynamics (e.g., sea surface
temperature change in the Pacific and Atlantic ocean),
and the vegetation condition, as measured by the
satellite-derived standardized seasonal greenness
(SSG) in the central United States (Figure 1) using 17
years of data (i.e., 1989 to 2005). Preliminary results of
this study are presented in this paper.

2. BACKGROUND

The National Drought Mitigation Center (NDMC) in
partnership with the USDA Risk Management Agency



(RMA) is investigating to produce a new drought
monitoring tool called the Vegetation Outlook (VegOut)
that provides outlooks of general vegetation conditions
based on prior climate and ocean index measurements,
satellite-based observations of current vegetation
conditions, and other environmental information. A data
mining (regression-tree modeling) technique was used
to analyze the time-lag relationships between vegetation
conditions and the oceanic and climatic observations to
predict future vegetation conditions at multiple time
steps (Tadesse and Wardlow, 2007, Tadesse et al.,
2005b). The VegOut utilizes the inherent time-lag
relationship between climate and vegetation response
and considers teleconnections between the ocean and
climate patterns over the continental U.S. Current
research is focusing on the development of 2-, 4-, and
6-week Vegetation Outlooks in the U.S. Great Plains
(Figure 1). Alternative modeling techniques and new
inputs into the current VegOut models are also being
investigated in an effort to provide more accurate
predictions of future vegetation conditions.

The overall objective of this study is to identify the
best possible temporal and spatial correlation of the
climate and oceanic variables that could improve the
predictability of the general vegetation condition.

Figure 1. (a) Six-week Vegetation outlook (VegOut)
map that was predicted for the period ending
September 4, 2006; (b) Bi-weekly Standardized
Seasonal Greenness (SSG) observed for the period
ending September 4, 2006. 

3. DATA 

The specific climate, satellite, and oceanic data
sets and the data for several static biophysical variables
used to identify the relationships between the climate
and vegetation; and oceanic indices and climate are
briefly described below. 
3.1 Climate-based data. Two commonly used climate-
based drought indices, the Palmer Drought Severity
Index (PDSI) and the Standardized Precipitation Index
(SPI), were used to represent the climatic variability that

affects the vegetation condition. The SPI is based on
precipitation data and has the flexibility to detect both
short- and long-term drought. The PDSI is calculated
from a soil water balance model that considers
precipitation, temperature, and available soil water
capacity observations at the station. Both indices were
initially calculated at each weather station location and
interpolated to create raster maps in producing a
continuous 1-km2 gridded surface of SPI and PDSI
values across the entire study area.
3.2 Satellite data.  The Standardized Seasonal
Greenness (SSG) metric, which represents the general
condition of vegetation, was calculated from 1-km2

resolution NDVI data over the study area. The SSG is
calculated from the Seasonal Greenness (SG) measure,
which represents the accumulated NDVI through time
from the start of the growing season (as defined from
satellite) [Reed et al., 1994]. From the SG data, the SSG
is calculated at 2-week time steps throughout the
growing season using a standardization formula (i.e.,
the current SG minus the average SG divided by the
standard deviation). The result is a series of SSG
images (which have values ranging from -4.0 to +4.0)
that show the vegetation condition at 1-km2 spatial
resolution that can be compared spatially to the other
geospatial data sets.
3.3 The oceanic indices. Eight oceanic indices that
may indicate ocean-atmosphere dynamics and
teleconnections were used in this study.  The indices
include the Southern Oscillation Index (SOI),
Multivariate El Niño and Southern Oscillation Index
(MEI), Pacific Decadal Oscillation (PDO), Atlantic Multi-
decadal Oscillation (AMO), Pacific/North American index
(PNA), North Atlantic Oscillation index (NAO), Madden-
Julian Oscillation (MJO), and Sea Surface Temperature
anomalies (SST).  
3.4 Biophysical data. The biophysical parameters used
in this study included land cover type, available soil
water capacity, percent of irrigated land, and ecosystem
type. The dominant (or majority) value within a 9-km2

window surrounding each weather station was
calculated from the 1-km2 images for each biophysical
variable.

These climate, satellite variables (the bi-weekly
historical records from 1989 to 2005), oceanic (2-week
values extrapolated from monthly data), and biophysical
variables were extracted for each weather station and
organized into a database, which would be used in the
finding the correlation and analyses to identify the time-
lag relationships between the variables and vegetation
condition. 

4. CLIMATE-VEGETATION TIME SERIES
RELATIONSHIPS

The correlation analysis between the climate data
and vegetation indices have been carried out to identify
the best suited period for the time-lag relationships. This
correlation analysis explores the statistical connection
between the vegetation condition and the occurrence of
precipitation prior to the satellite based observation of
vegetation. Computations were done for each period of



the observed satellite index with the climate data by
lagging 1 to 26 periods (bi-weeks) iteratively in time at
each station to determine the maximum correlation.
These iterative processes were conducted for a 15-state
region (the total of 1420 stations) in the central U.S.
resulted in the correlation values ranging from -0.68 to
+0.81. 

In this correlation analysis, it is observed that the
correlation differs for each ecoregion. For example,
Figure 2 (a) and (b) illustrate the climate-vegetation
time-lag relationships and the differences between two
ecoregions with sample size of 12 stations each in
Nebraska and Kansas.

Figure 2. Climate-Vegetation Time Series
Relationships for two ecoregions (a) Sand Hills,
Nebraska (Ecoregion 44) and (b) Flint Hills, Kansas
(Ecoregion 28). X-week SPI represents the time
interval considered to calculate the SPI.

The Sand Hills (Nebraska) ecoregion (Figure 2 (a))
showed that the vegetation has a higher correlation with
relatively longer-term period (x-week) SPI (i.e., 8-, 16-,
and 20-week SPI) than the Flint Hills (Kansas)
ecoregion, which was correlated with 1-week and 2-
week SPI values in most part of the growing season. In
addition, the lag time was also longer for Sand Hills (i.e.,

20 to 34 weeks lag) as compared to Flint Hills (i.e., 6 to
8 weeks time lag) for most periods of the growing
season. The other difference observed in this analysis
was that the correlation coefficient values were higher
(i.e., 0.37 to 0.61) for Sand Hills, whereas relatively
lower for Flint Hills (i.e., 0.34 to 0.42). In both
ecoregions, the correlation coefficient values were lower
at the beginning of the season and improved as the
season (vegetation condition) progressed.

5. OCEANIC-CLIMATE TIME-LAG RELATIONSHIP

A similar correlation analysis was done to identify
the time-lag relationships between the climate and
oceanic indices. Eight oceanic indices that were
described in Section 2.3 were used in this study. To
demonstrate the method, one of the oceanic indices
(i.e., the MEI) is discussed in this paper. 

Figure 3 shows the correlation coefficient of MEI
and PDSI vs. growing season periods. This graph
(Figure 3) showed an interesting and consistent time lag
pattern of MEI with the PDSI values. It appears that the
max R2 for the lag between the PDSI and MEI (0.25 -
0.3) is about 12 bi-weeks (24 weeks) for the central U.S.
This result suggests that MEI values at 6 months lead
time may have a relatively better correlation with
precipitation condition. This helps in determining which
variables to integrate in modeling the VegOut.

Figure 3. Time-lag relationships of climate (PDSI)
and the MEI for the growing season of central U.S.

 
6. SPATIAL VARIABILITY: EMPIRICAL

ORTHOGONAL FUNCTION (EOF) ANALYSIS

Multivariate analyses such as the Empirical
Orthogonal Function (EOF) are widely used in many
disciplines to identify spatial and temporal patterns
among environmental variables. The main advantages
of this analysis is to represent an overall statistical
structure with fewer critical variables derived from all of
the variables contained in the original data (Wilks,
2006). We make use of EOF analysis of the PDSI
covariance matrix to identify the primary modes of



drought variability in the Central United States.  The
spatial analysis (EOF) was also used to determine the
spatial variability of the climate condition in each period
during the growing season. The analysis of the
covariance of climate condition was intended to reveal
the spatial impact of drought in other years for this
same time period. This helps in delineating areas that
have similar climatic variability. Those areas with similar
climate variability will then be used to delineate regions
and investigate the influence of the teleconnection.

The eigenvalue analysis was utilized to retain an
appropriate number of significant EOFs to represent a
sufficient fraction of the variances in the data. Figure 4
illustrates the eigenvalues to show how each eigenvalue
represent the variance of the data. As shown in the
figure, the first 3-5 eigenvalues dominated the others in
most of the PDSI values because the eigenvalues drop
sharply. Note that only the first eigenvalue, representing
41% of total variance within the data set, was utilized in
this study. 

Figure 4. Eigenvalue spectrums of the PDSI values

Figure 5 shows the first EOFs of the PDSI
corresponding to the first eigenvalue, which are the
dominant mode of variation (i.e., more than 41%
cumulative percentage of the total variance). The PDSI
values used in this preliminary study were the bi-weekly
PDSI values at each weather station in the 15-state
study area during one of the summer growing biweekly
periods (i.e., second-half of July) ) to illustrate the
methodology. 

As shown in Figure 5, a distribution of strong
negative values (-0.3 to 0.2) in the first mode starts in
the Rocky Mountain region and encompasses much of
the central Great Plains and into near Minnesota as
well.  Three distinct spatial patterns appear in the first
EOF. This occurs in three broad regions, which are
characterized by gradual increments of the first EOF
found between the Rocky Mountains and south central
United States (around Texas). These patterns show that
strong negative values (e.g., severe to extreme drought)
prevail over southern Montana, Wyoming, western part
of North Dakota, western parts of South Dakota, the

Sand Hills of Nebraska, eastern Nebraska; while less
negative values (e.g., moderate drought) cover parts of
the southeast regions, north Texas and the northeast in
the study area. The third pattern may show near normal
condition as compared to the other two patterns. Similar
analysis cab be done for each biweekly periods of the
growing season. 

Figure 5. The first EOF of the PDSI values showing
the possible spatial drought patterns.
 
7. FUTURE WORKS

In addition to the preliminary results presented in
this paper, further thorough study is in progress to
identify time lag relationships of vegetation conditions
with climate, oceanic, and other environmental
variables. Future research works are planned that
include: i) continuing the study of temporal  and spatial
relationships between climate and vegetation based on
not only specific ecoregion but also land cover type; ii)
considering more oceanic indices to identify the best
variable that correlates with vegetation and its time lag;
and iii) selecting the best predictive variables based on
the higher correlation values, and integrating the best
climate and/or oceanic variables that correlate with
vegetation condition to produce improved drought
monitoring tool (i.e., the VegOut). 

8. SUMMARY

Better understanding of temporal and spatial
relationships of precipitation and vegetation conditions
have been a fundamental research question in drought
monitoring. In this study, it is attempted to address this
research question. First,  correlation has been done
between the observed vegetation condition (i.e., satellite
index value) in one period (bi-week) and 26 time-steps
(i.e., 26 biweekly periods in a year) separately and
iteratively. This correlation provides information that
assists in determining the time-lag relationships
between effective precipitation in time for vegetation
growth or stress. The correlation coefficients in studying



the climate-vegetation temporal relationships for the 15-
state region are acceptably high for the intended
purpose of comparing and determining the best time-lag
period of precipitation that influences the vegetation
conditions. Furthermore, there is a distinct progression
in the level of the correlation (higher correlation
coefficients) for specific ecoregions.

Second, the correlation between different oceanic
indices and climate (drought) indices has been
examined. Based on the correlation coefficient values, it
is observed that all the selected oceanic indices do not
show strong relationships with the climate and
vegetation in the central United States. However, some
indices (e.g., MEI) showed relatively significant
correlation and interesting temporal pattern that may be
helpful in analyzing and predicting vegetation conditions
a few weeks ahead of time. 

The other important result in this preliminary study
was the identification of the spatial pattern (i.e. spatial
covariance) of the climate data in the growing season.
This may help in identifying the areas that have spatial
relationships in intensity and duration of drought. It may
also help in reginalizing the areas that have similar
climate variation. The results of this relationships is
expected to improve the accuracy of the VegOut that
helps in drought monitoring. In addition, thorough study
in the identifying the time lag relationships of vegetation
condition with climate and other environmental variables
have an advantage to predict the vegetation condition
with better accuracy and higher spatial resolution.
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