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1. abstract

The knowledge of the placement and size of clouds
in the atmosphere has many applications in Atmo-
spheric Science. In particular, clouds play a major
role in the earth’s radiation budget. Given the large
amounts of image data and the relative short time
this information is relevant requires an automated
detection algorithm that runs in real-time on current
workstations. We present such an algorithm in this
paper.
We show that given daytime images, human ana-
lysts agree amongst themselves at most 94% on the
placement of clouds within the image. The subjec-
tivity of the problem motivates our approach. The
algorithm uses a combination of neural networks
to compute the probability of a pixel being clear
or cloud. Images are first sorted into neighbor-
hoods via a Self-Organizing map based on the im-
age’s gray scale levels. After sorting, each pixel is
processed using a Mixture of Experts neural net-
work unique to the neighborhood. The calculation
is of the probability that a pixel represents clear or
cloudy. A pixel level cloud mask is then constructed
by assigning the most likely designation to each
pixel.
The algorithm reliably identifies a variety of clouds
from images. Relative agreements with human an-
alysts are typically greater than 90%. In addition,
the pixel level cloud masks show high visual cor-
relations with unprocessed images as well as very
good temporal correlations.

2. Introduction

Images of the sky are taken by a whole sky im-
ager (WSI). This is an instrument developed by the
Atmospheric Optics Group at the Marine Physical
Laboratory of the Scripps Institution of Oceanogra-
phy at the University of California, San Diego Keller
et al. (2006). It is designed to take a horizon to hori-
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Figure 1: Whole Sky Imager

zon picture of the sky at user specified times. For
a given time it takes three images in quick succes-
sion. Each of these images is taken with a different
filter. The filters are blue, red, and near infrared. In
our discussions we refer to these as BLU, RED, and
NIR. The images produced are 16-bit with 512x512
total pixels in each image. Examples of images can
be seen in Figure 10. A picture of a typical unit is
shown in Figure 1.

Our problem is given such an instrument and im-
ages to determine the location of clear sky and
clouds. Due to the high volume of imaging data
this determination needs to be automated and
completed relatively quickly. Each group of three
images is taken at roughly one minute intervals
throughout the day. Unless there is mechanical is-
sues images are taken everyday. The average num-
ber of image times for a day is ∼ 1000 which trans-
lates to ∼ 365, 000 cloud masks per year. More im-
portantly for the information to be relevant the im-
ages need to be processed as quickly as possible.

The ultimate goal is to assign to each pixel in an
image a value of 0 if it is clear sky and 1 if it is a
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Figure 2: Example of imaging grading.

cloud. Thus each set of images for a given time are
used to build a “0/1” map from which relevant atmo-
spheric information can be acquired. Some exam-
ples are; cloud fraction, overall direction of clouds,
clear sky quality, etc.

Without other means of verification we assume
that human analysts are the gold standard. We
demonstrate through a small study that on aver-
age analysts when given the same set of images
only agree ∼ 94% with each others assessments.
Therefore, identifying clouds in a given image is not
entirely objective.

Nevertheless, we have developed an algorithm
to produce accurate cloud masks using a combi-
nation of neural networks. Our cloud mask algo-
rithm consists of using a combination of neural net-
works responsible for pre-processing and pixel level
mappings. Accuracy here is to be understood as
agreement with human analysts. Finally, we show
that this level of agreement is achievable with rela-
tively small networks. The total number of network
weights is less than 298. This makes the computa-
tional expense of our algorithm negligible. Our al-
gorithms are capable of processing a days worth of
images in 3 minutes on a 3 GHz Intel Xeon worksta-
tion.

3. The Gold Standard

Without other means of verification we considered
a human analyst as the gold standard for determin-
ing the designations. To evaluate the performance
of the various algorithms we had several analysts
grade the sample group of images at the same pixel

B\A Clear Cloud Uncertain
Clear c00 c01 c02

Cloud c10 c11 c12

Uncertain c20 c21 c22

Table 1: Example Contingency Table

locations. This sample was then used to judge ac-
curacy for our algorithm. Also similar information
was also used to form a training set for the neural
networks.

We had a total of six analysts. The analysts
evaluated 1095 total images. These images repre-
sented an almost uniform sample from the months
of May, June, September, October, November, and
December for the year 2006. Each image was des-
ignated Cloud, Clear, or Uncertain in 33 pixel boxes
placed at regular intervals. The total number of
designations for each analyst was close to 36, 135
as some boxes were left undetonated by certain
analysts. All of the designated boxes were then
compared to the various algorithms to generate a
percentage agreement or overall score. Figure 2
shows the template on a typical image.

The sampling of images and the placements of
evaluation boxes was not random. We decided to
only grade images during the day. In addition, each
graded image usually corresponded to ten minutes
before the hour. The time was chosen to allow
for cross validations with other meteorological data.
There were a few images that did not correspond
to this sampling scheme due to lack of availabil-
ity. There is also a lot of temporal correlation in
images so grouping several images in a small time
window is not entirely necessary. The pixel boxes
were placed at various azimuth and zenith angles.
Azimuth angles ranged between 0◦ and 315◦ with a
increment size of 45◦. The center of the image cor-
responds to zenith angle 0◦. Zenith angles ranged
between 0◦ and 70◦ with increment size of 15◦. So
for a given image there are approximately 33 boxes.

To get a statistical upper bound on how well
a given algorithm could perform with our evalua-
tion scheme we decided to compute the conditional
probabilities between analysts. This was done in
two ways. The first was to include all designations,
i.e. Clear, Cloud, and Uncertain. We also repeated
the calculations disregarding any box that was des-
ignated as Uncertain by either analyst. The calcula-
tion of the probabilities was facilitated by use of con-
tingency tables. An example of a contingency table
can be found in Table 1. We computed four main
probabilities. It was natural to partition the compu-
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Figure 3: Sample probability of agreement. Each
point represents the agreement rate amongst two
analysts for all three classifications; Clear, Cloud,
Uncertain.

tation based on image list.
The first was overall agreement. These calcula-

tions can be found in Figures 3 and 4. The formula
for this calculation is simply the sum of the diagonal
in the table divided by the sum of the entire table
when counting uncertain and the same for the up-
per 2x2 table when we disregard Uncertain.

Finally for each designation we computed the
agreements. Figures 5, 6, and 7 are the scatter
plots of all possible pairings between analysts when
we take into account Uncertain. The probabilities
when excluding Uncertain are in Figures 8 and 9.
Taking x and y to denote the various designations
this corresponds to P ( “A:x” | “B:y” ). The probabil-
ity of each of these is simply the number of times
A designated x divided by the number of times B
designation y. As an example the probability that A
agrees with B’s Cloud designation is,

P ( “A:Cloud” | “B:Cloud” ) =
c11

c10 + c11 + c12

Again as in the overall agreement when Uncertain
designations are ignored the table is reduced to the
upper 2x2 portion.

The best an algorithm can score with regard
to our evaluation methodology is the mean of the
agreements between the analysts. It does not mean
that the best an algorithm can perform in detect-
ing clouds is this mean but rather how well we can
measure performance. The main issue is that de-

Figure 4: Sample probability of agreement. Each
point represents the agreement rate amongst two
analysts using only Clear and Cloud classifications.

termining whether a given group of pixels repre-
sents a cloud is not entirely objective. There is a
small percentage of times that are not straight for-
ward to classify. This is particularly true of boxes
that are labeled Uncertain and provided our motiva-
tion for computing additional statistics disregarding
these classifications.

Studying the various conditional probabilities we
see that on Cloud and Clear designations analysts
have a high level of agreement. The high level of
agreements on these classifications are easily un-
derstood. For most of the classifications it is very
straight forward to label the box as Clear or Cloudy.
Boxes that received the designation of Uncertain
vary quite considerably. This is clear from Figure 7.
Part of the explanation for the high variances on Un-
certain classifications is explained by their relatively
small sample size. Another reason is analysts were
not given specific instructions on what constituted
any of the particular classifications. Uncertain clas-
sifications are used to designate a variety of occur-
rences in images ranging from airplanes to the halo
effect around the sun. Classifications involving the
halo effects are hard to determine due to limitations
of our validation tool and the images themselves.
For example the validation tool does not allow for
adjustments of brightness nor contrast.

Overall there was a high level of agreement be-
tween the analysts with the exception of Uncertain
designations. If we include the Uncertain designa-
tions, then the average level of agreement is 88.0%.
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Figure 5: Sample probability of agreement between
analysts conditioned on Clear classifications. Each
point represents one possible pairing of the ana-
lysts. These are calculated using the 3x3 contin-
gency tables.

The average agreement between analysts moved
upto 93.8% when disregarding Uncertains. This is
reasonable in our opinion due to the limitations of
our evaluation process. Also it is safe to assume
that there are a small percentage of designations
that were misclassified by the analyst due the er-
ror of checking the wrong box. Finally, there are
instances when the analyst was not entirely sure
but decided to designate the box as either Clear or
Cloud. It is our estimate that these factors account
for 6 ∼ 8% of the 36, 135 possible designations. The
majority of these resulting from when analysts are
not entirely certain of their designation.

The conclusion we draw is that the performance
of any algorithm should be relative to the average
level of agreement between analysts. This average
gives a statistical upper bound on how well an al-
gorithm can be evaluated. Basically, it is impossible
for the algorithm to agree on all designations with
all the analysts. The algorithm’s performance in rel-
ative terms should consider the level of agreement
amongst analyst as 100% accuracy. The relative ac-
curacy of an algorithm is then given by,

Relative % =
Algorithm’s %

Average % Agreement

We will discuss performance in both absolute and
relative terms.

Figure 6: Sample probability of agreement between
analysts conditioned on Cloud classifications. Each
point represents one possible pairing of the ana-
lysts. These are calculated using the 3x3 contin-
gency tables.

4. Cloud Detection Algorithm

Our algorithm makes use of several neural networks
to assign a clear or cloud designation to pixels in im-
ages. The first step is to sort the images into neigh-
borhoods using a self-organizing map. Following
the assignment of an image to a neighborhood an-
other neural network assigns clear or cloud to each
pixel in the image.

As demonstrated in the previous section the iden-
tification of clouds in an image is subjective. This
lead us to calculate a pixel’s probability of being a
clear or cloud. The central idea to our algorithm
is that a neural network can be used to approxi-
mate this probability distribution. To accomplish this
we use a Mixture of Experts neural network Jacobs
et al. (1996). The images are placed into differ-
ent neighborhoods to partition the problem domain
hence reducing spatial complexity. Each of these
neighborhoods has a uniquely assigned Mixture of
Experts that is responsible for pixel level classifica-
tions.

a. Building Neighborhoods via a Self-Organizing
Map

The ultimate goal of the unsupervised learning was
to reduce the spatial complexity of the problem.
We desired an automated way to classify images
into large scale types. These large scale types
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Figure 7: Sample probability of agreement between
analysts conditioned on Uncertain classifications.
Each point represents one possible pairing of the
analysts. These are calculated using the 3x3 con-
tingency tables.

are thought of as neighborhoods with the images
in them having some commonality. For instance,
a neighborhood might consists of images classified
as clear, cloudy, hazy, etc.. The classification net-
work is trained on a subset of images and then acts
as a pre-processor for threshold algorithms.

We used a variation of a Self-Organizing Map.
The details of the base algorithms which we used
can be found in Kohonen (1990) as well as a
general discussion on various properties of these
maps. It was hoped that images would be mapped
into meaningful neighborhoods. If this was the
case, then it would limit the variability in the images.
These neighborhoods would then be processed us-
ing various threshold algorithms.

Our use of Self-Organizing maps is very similar
to a Winner Take All (WTA) Algorithm. WTA train a
single layer network via a competitive process. A
good introductory discussion of WTA can be found
in Brady (1992). We use some slight variations
which we discuss below but first we give a brief out-
line of a generic WTA algorithm.

Generically the algorithm is to start with a train-
ing set, an untrained network, an adjustment factor,
and a total number of neighborhoods. Each training
example is feed through the network. The weights
which activate the most with respect to some cri-
teria, i.e. give the biggest response, are adjusted
using the input and adjustment factor. All the other

Figure 8: Sample probability of agreement between
analysts conditioned on Clear classifications. Each
point represents one possible pairing of the ana-
lysts. These are calculated disregarding Uncertain.

weights are kept constant. Iteration of this process
trains the network. A complete pass through the
training set is typically referred to as an epoch. The
total number of epochs is decided before hand and
training proceeds until this number is reached. The
final result is a trained network. The outline of our
algorithm is the same. We now give the specifics.

It is convenient to keep the network in a two di-
mensional array, i.e. matrix form. The rows of this
matrix are the different activation groups. The col-
umn dimension of the matrix corresponds to the
number of components in an input. Since the net-
work is kept in matrix form and given our selec-
tion and updating rules feeding an input example
through the network corresponds to a matrix multi-
plication. A function can also be applied to the out-
put matrix component wise, but we have chosen to
use the identity function.

We also specify initial weight values, a normal-
ization condition, and a rule for weight adjustment.
Each row in the network is initially set to,

w(k) =
1√
r
(1,1, . . . ,1) (1)

as proposed in Hecht-Nielsen (1987) with r equal
to the number of components in an input. It is as-
sumed that all the input examples have also been
normalized prior to training. After feeding an input
through the map we determine the winner by find-
ing the biggest output. The row onto which the input
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Figure 9: Sample probability of agreement between
analysts conditioned on Cloud classifications. Each
point represents one possible pairing of the ana-
lysts. These are calculated disregarding Uncertain.

has the biggest projection is declared the winner.
Explicitly the rule is given by,

(x(n),w(k)) = maxs{(x(n),w(s))}. (2)

Once a winning row is determined its weights are
updated. We made a slight modification to the up-
date rule presented in Kohonen (1990). The update
rule we used is,

w
(k)
iv = w

(k)
iv + α(t)(x(n)

j − w
(k)
ij ) (3)

with k denoting the winning row. The motivation
for forming the difference of x(n) and w(k) is to
limit the updating of weights. Only weight compo-
nents that differ considerably from the correspond-
ing input components get a significant update. That
is weight components become frozen once they
match well with input components. The factor α(t)
is a non increasing function of epoch number and
whose max value is less than or equal to one. For
our training we used piecewise linear functions. Af-
ter updating the winning row is then re-normalized.
The whole process is repeated for a specified num-
ber of epochs on the training set.

Although the overall training scheme was the
same, we experimented with several different train-
ing sets before settling on using histograms of the
NIR data. The training sets are built by specifying
a given group of files as opposed to random selec-
tion. The procedure for building histograms is to first
mask out the horizon, this causes the processing to

Figure 10: Examples from clustering network train-
ing set. Starting from upper left and going clock-
wise; Clear, Cloudy, Thin Cirrus, and Partially
Cloudy.

ignore such things as antennas, buildings, moun-
tains, and trees. The data is then scaled by the
inverse of the max value and a histogram is built.
These histograms form the training set for the WTA
algorithm.

b. Pixel Classifications

As stated in the last section we trained a self-
organizing map to act as a pre-processor. The goal
being to cluster images based upon some coarse
grain characteristic. For each of these clusters we
would then use a specialized threshold algorithm to
build cloud masks. We decided to train independent
neural networks for each cluster. These networks
would be responsible for the pixel level classifica-
tions and generation of cloud masks. The main ad-
vantages of using neural networks were; a thresh-
old could be determined on a per pixel basis and
meta data could be incorporated into a designation.

Due to the subjective nature of designating pixels
we decided to compute the likelihood of designa-
tion. This consisted of building and training neural
networks to approximate a probability distribution.
This is known as a Mixture of Experts is presented
in Jacobs et al. (1996). An introduction of the con-
cept can be found in Bishop (1995). For clarity we
will briefly summarize the general results.

There are two key ideas. The first is that outputs
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from a neural network can be thought of as continu-
ously varying parameters. This means that the out-
puts can be used as means and variances to define
a Gaussian kernel. The other idea is that by sum-
ming Gaussian kernels it is possible to approximate
another probability distribution. That is to say for a
given probability distribution,

p(t|x) ≈
M∑

k=1

αk(x)φk(t|x). (4)

The value of M denotes the number of kernels used
in the summation which is the same as the number
of experts and C denotes the dimensionality of the
encoding. We take the mean µ(x) to be the kernel’s
the designation. The coefficient of each kernel is
the prior probability of a given input. In the current
context it represents the certainty of a particular ker-
nel designation. For the outputs we will use the no-
tation from Bishop (1995). Outputs corresponding
to the priors are denoted zα

k , to the variances by zσ
k ,

and the means by zµ
k,i.

Maintaining probability imposes the constraint on
the priors,

M∑
k=1

αk(x) = 1. (5)

As such we follow convention and take the priors to
be defined using a soft-max function, hence

αk(x) =
exp zα

k∑M
l=1 exp zα

l

. (6)

Typically, each kernel corresponds to a different
expert. A kernel is given by,

φ(t|x) =
1

(2πσ2)C/2
exp

(−‖t − µ(x)‖2

2σ2(x)

)
(7)

with x and t representing the network input and an-
swer respectively. Note that t will only be known on
a training set.

The result of using a neural network in this fash-
ion is equivalent to using the error function,

E = −
∑

n

log
M∑

k=1

αk(xn)φk(tn|xn) (8)

as part of a maximum likelihood calculation. That
is we minimizes the error with respect to the net-
work weights. We refer to this optimization as net-
work training in later sections. Simple gradient de-
scent with a stochastic updating rule, as outlined in

Mitchell (1997), was used to perform the optimiza-
tions.

We conclude this section with a synopsis of the
weight update rule. For convenience we define the
following function of x and t,

Πk =
αkφk∑M
l=1 αlφl

. (9)

Output from the iuh unit is denoted zi. The kTe unit’s
activation function is g(ak) with the input defined as
the weighted average of the outputs from the previ-
ous level,

ak =
∑

l

wk,i · zi. (10)

The value of g(ak) is also the output from unit k.
Weight adjustment for hidden units is given by,

δk = g′(ak)
∑

j∈D(k)

wj,kδj (11)

with D(k) denoting the units that are connected to
unit k but one level closer to the output layer. This
is derived by application of the chain rule when dif-
ferentiating the error function with respect to the
weights.

The output units have more complicated updating
rules. There is a separate update rule for each type
of output, i.e. one for the prior probabilities, vari-
ances, and means. The partials of the error func-
tion with respect to the weights for the output units
are,

∂E

∂zα
k

= αk −Πk (12)

∂E

∂zσ
k

= −Πk

(‖t − µk(x)‖2

σ2
k

− C
)

(13)

∂E

∂zµ
k,i

= Πk

( µk,i − ti
σ2

k

)
. (14)

These partials are the weight updates for the output
layer. They are also used in ( 11 ) to calculate the
hidden unit values.

We used the stochastic update rule Mitchell
(1997) given by,

wk,i = wk,i + η δkzi (15)

with η corresponding to the step size.
A variety of network inputs, predictors, were

used. They were limited to the meta information
recorded by the WSI and the sky images. The meta
data included various camera diagnostics, temper-
atures, time, day of year, longitude/latitude of the
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Figure 11: CCD chip temperature vs. time (Z). The
blue curve is of a predominately clear day and the
red of a predominately cloudy day. Both days are
from a summer month and they are only separated
by nine days.

WSI, and solar position. Much of this data is not
strongly correlated to pixel designations. We even-
tually made different combinations of the pixel lo-
cation, pixel intensity, time, solar position, ccd chip
temperature, and exposure.

We included time, solar zenith, ccd chip tempera-
ture, and exposure to act as global predictors. Time
was included due to the fact hat the color of the
sky changes through out the day. This is also why
the solar zenith angle was used. The ccd chip tem-
perature was indicative of the relative brightness of
the sky. On clear days the ccd chip temperature
is usually higher than in overcast days. Figure 11
shows a typical plot of chip temperature for a clear
and cloudy day. For similar reasons we included the
exposure of the camera.

Three network architectures were tried for the
Mixture of Experts. These were 4x16x9, 6x16x9,
and 8x16x9. All hidden layers had hyperbolic tan-
gent activation functions. Cloud designations were
encoded as 0.99 and Clear designations were en-
coded as 0.01. This encoding scheme was chosen
for convenience and to help with numerical stabil-
ity. It limits the dimensionality of the means to one.
As our encoding involved only a one dimensional
mean then each network had three experts. We
also used four experts but difficulties arose during
training however either as numerical instability or
lack of convergence to a suitable extremal. Also,
when we did get satisfactory convergence perfor-
mance was not noticeably improved.

As noted the instrument takes three whole sky
images in quick succession. Each corresponding
to the use of a different filter. The combinations of
the intensity information were based on several ob-
servations. The first was analysts graded images
∼ 99.9% using primarily the NIR images. As such, it
was reasonable to attempt to build cloud masks us-
ing only these values. Using only NIR intensity val-
ues would also act as a baseline. For the larger net-
works, differences between the NIR and other spec-
trum were used. On bright days objects in the NIR
images are significantly brighter than in the other
spectrum. A simple means of using this observa-
tion was to have the differences as a predictors.

A variety of predictors for the 4x16x9 networks
were used. We experimented with combinations of
time, solar zenith angle, row position of pixel, ccd
chip temperature, and NIR pixel intensity value from
the center of box. After reviewing agreement rates
and visual correlations it was clear that time, pixel
row position, ccd chip temperature and the pixel in-
tensity gave the best results.

For the 6x16x9 networks we also included pixel
column position, ratio of BLU to NIR, ratio of RED
to NIR, difference of NIR and BLU, difference of NIR
and RED, and max value over all pixels of a given
image for BLU, NIR, and RED. Again we used sev-
eral combinations judging the performance of each.
We finally decided upon time, ccd chip temperature,
pixel row position, pixel column position, difference
of NIR and BLU, and difference of NIR and RED. As
this combination provided good performance and
an ease of convergence.

Finally, the 8x16x9 used the same predictors as
the 6 input networks with the addition of solar
zenith angle and camera exposure. Again this was
decided after trying several other predictors and
weighing ease of convergence, the visual quality of
cloud masks, and agreement with our validation set.

5. Training and Results

The clustering network was trained simply by spec-
ifying a list of images. The images in this list were
picked by inspection with care being given to having
an equal quantity of four specific types. We chose
predominately clear and cloudy, partially cloudy,
and hazy days. Classification was open to the sub-
jectivity of an analyst and some days that were pre-
dominately cloudy could also have been considered
hazy. An example of each can be found in Figure
10. On average we trained the clustering networks
for 12000 iterations. There was not a noticeable im-
provement beyond this point. Starting and ending α
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% (seed) % (entire)

#neigh. 1 88.3 82.7

#neigh. 4 90.0 87.0

#neigh. 8 93.3 90.0

Table 2: 4 predictors overall agreement with training
set.

% (seed) % (entire)

#neigh. 1 95.2 93.9

#neigh. 4 96.7 95.2

#neigh. 8 98.7 96.2

Table 3: 6 predictors overall agreement with training
set.

were 0.999 and 0.001 respectively. The number of
neighborhoods ranged from 2 to 64 but as we note
later there was difficulty getting our training set to
populate more than eight.

To train each Mixture of Experts we graded a
group of independent images using a completely
different template. The template consisted of 265
equally spaced boxes. In addition, the images were
graded by a single independent analyst with the
caveat that pixels should only be labeled if the des-
ignation was certain. This meant that most if not all
images were only partially graded, i.e. most boxes
for a given image were left ungraded. The final set
of graded boxes consisted of 12075 separate exam-
ples. This set formed the collection of training ex-
amples. An additional training set was constructed
to ensure complete independence from the valida-
tion set.

Boxes that were labeled uncertain by analyst are
usually caused by obstruction from the occulter. We
ignored these designations in our training for that
reason. This reduced the size of the training set to

% (seed) % (entire)

#neigh. 1 96.0 95.5

#neigh. 4 96.5 96.0

#neigh. 8 99.7 96.6

Table 4: 8 predictors overall agreement with training
set.

% agreement predictors:
4 6 8

#neigh. 1
72.8 83.2 84.4

#neigh. 4
76.4 85.4 84.8

#neigh. 8
78.1 83.4 82.8

Table 5: Average agreement over all lists on valida-
tion set.

10527. As such we did not have the neural networks
output this designation. It is a straight forward cal-
culation to track the occulter and mask out the pix-
els of its location in the cloud masks. This is simi-
lar to the procedure for the horizon masking during
the WTA clustering calculations. Considering the
training process as in Owens and Filkin (1989), it is
equivalent to solving a system of coupled ordinary
differential equations. It is clear only the output layer
has direct external forcing resulting from the error
function. Thus restricting the size of the output layer
is of considerable help with the numerical stability.

Training began by selecting at random a small
sub-sample from the larger training set. The goal
was first to get a network trained on this small set
and then up train with a larger set of examples. Dur-
ing the course of training we tried several different
schemes based on this idea but finally decided that
only one small training set per neighborhood was
necessary to seed the learning process.

The overall training for each neighborhood con-
sisted of doing a gradient descent on the seed train-
ing set until a specified accuracy was reached. Af-
ter this the network was trained in alternating fash-

9



% (seed) % (entire) #ex. (seed) #ex. (entire)
#neigh. 1

88.3 82.7 599 10527
#neigh. 4

96.6 93.0 89 1356
95.4 96.2 65 1357
96.0 91.0 100 1817
85.5 82.3 345 5997

#neigh. 8
100 100 37 745
100 97.1 80 1533
100 99.0 11 205
93.0 91.9 43 754
91.2 86.6 136 2332
82.6 79.7 115 2153
96.7 92.8 90 1377
97.7 92.9 87 1428

Table 6: 4 predictors agreement with training set by neighborhood.

ion using the larger training set and the seed. This
later alternating training was also performed using
gradient decent with the same step size as the ini-
tial training. The alternating training was terminated
when a specified level of accuracy on the seed and
larger training sets was reached. The seed set was
usually several times smaller. The agreements for
the various predictors on the training set can be
found in Tables 6, 7, and 8. These are displayed
by neighborhood. The overall agreement rates are
found in Tables 2, 3, 4. All training was done on-line,
i.e. weights were updated after each example.

The number of neighborhoods calculated using
a WTA algorithm was restricted by the training set.
For more than eight it was difficult to seed each
neighborhood. Hence after some initial investiga-
tions we decided on one, four, and eight neighbor-
hoods. The initial weights of the neural networks
were chosen at random and several different initial-
izations were trained. We then used the one with
the highest overall accuracy.

Upon completion of training the various neural
networks along with their clustering network are
used to build cloud masks. These were then scored
using the independently graded images. Sample
cloud masks can be found in Figures 12 - 13. White
pixels in the cloud masks corresponds to clear sky.
It is important to note that these images are com-
pletely independent of the training data. These im-
ages do not appear in either the training or vali-
dation sets. Also each pixel is the most probable
designation. The cloud masks correspond to the

“0/1” mapping defined by the mean of the kernel
with highest prior, i.e.

arg maxk{αk(x)}. (16)

Relative and absolute accuracies can be found in
Table 9, 10, and 11. Also included in these tables
is the relative bias of clear and cloud designations.
Biases that are less than unity correspond to the
under detection of clouds.

6. Conclusion

We have demonstrated that our approach builds re-
liable cloud masks at a pixel level. As Figures 12-13
show our approach can resolve typical clouds. In
addition, the networks are also able to identify ob-
jects in images such as the occulter. Note, that the
networks were not explicitly trained to identify the
occulter. This network generalization was present
in most images when using six predictors. The vali-
dation results are likely overall too low for other pix-
els in an image. The images when viewed agree
quite well on a macro scale with the cloud masks
from our algorithm. Most of the disagreements are
from fine structures in the images, e.g. cloud edges.
These regions of an image form a low percentage of
the overall number of pixels. Given the small sam-
ple size of the validation set and the apparent vi-
sual similarity the relative agreements are more in-
dicative of performance. Therefore, our best results
agree ∼ 90% with human analysts.

Overall judgment of performance was taken to be
a combination of visual inspection of a few random
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% (seed) % (entire) #ex. (seed) #ex. (entire)
#neigh. 1

95.2 93.9 599 10527
#neigh. 4

97.8 98.2 89 1356
98.5 95.4 65 1357
100 99.0 100 1817
95.1 93.1 345 5997

#neigh. 8
100 100 37 745
100 98.2 80 1533
100 99.0 11 205
100 98.4 43 754
98.5 95.9 136 2332
96.5 92.2 115 2153
98.9 98.3 90 1377
98.9 94.7 87 1428

Table 7: 6 predictors agreement with training set by neighborhood.

% (seed) % (entire) #ex. (seed) #ex. (entire)
#neigh. 1

96.0 95.5 599 10527
#neigh. 4

98.9 97.9 89 1356
100 99.6 65 1357
100 98.2 100 1817
94.2 94.1 345 5997

#neigh. 8
100 99.9 37 745
100 98.1 80 1533
100 99.5 11 205
100 98.3 43 754
100 95.1 136 2332
100 94.8 115 2153
98.9 98.4 90 1377
98.9 95.7 87 1428

Table 8: 8 predictors agreement with training set by neighborhood.
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% relative % absolute bias
#neigh. 1

image list: 1 81.6 76.8 0.975
2 72.7 67.2 0.742
3 76.2 71.8 0.874
4 81.8 75.2 1.075
5 76.7 73.6 1.024
6 76.4 71.9 0.745

#neigh. 4
image list: 1 83.3 78.4 0.904

2 83.1 76.9 0.850
3 81.6 76.9 0.898
4 82.5 75.8 1.037
5 79.3 76.1 0.999
6 78.6 74.0 0.756

#neigh. 8
image list: 1 83.7 78.8 0.824

2 86.4 79.9 0.805
3 86.6 81.5 0.930
4 82.1 75.5 0.917
5 81.2 78.0 0.966
6 79.4 74.7 0.746

Table 9: 4 predictors agreement with validation set.

samples and the calculation of agreement with the
validation lists. The agreements in Table 5 differ
from the worst (4 predictors and 1 neighborhood)
to the best (6 predictors and 4 neighborhoods) by
only 12.6%. Even though the agreements differ by
a few percentage points, cloud masks made with
six predictors are markedly better in appearance.
Although the use of six predictors instead of four
predictors increased overall agreement by ∼ 10%,
the trend did not continue when we added two addi-
tional predictors. In fact, some of the overall agree-
ments decreased as well as the visual correlation
between images and their cloud masks.

According to our validation lists and the calcu-
lated biases, clouds are being under detected. This
is probably a result of our relatively small training
set. The training set is not indicative of the seasonal
light conditions. Cloud motion between images for
a given time is also a cause of error. Recall images
are taken in quick succession which means clouds
will invariably move causing some cloudy pixels to
be take as clear.

Our pre-processing network seems to help most
when we use a small number of predictors. The
clustering seems to reduce the overall complexity
by partitioning the problem domain. Our best re-

% relative % absolute bias
#neigh. 1

image list: 1 87.2 82.1 0.864
2 89.0 82.3 0.809
3 92.2 86.8 0.783
4 90.0 82.7 0.692
5 89.2 85.6 0.740
6 82.7 77.9 0.748

#neigh. 4
image list: 1 87.4 82.3 0.887

2 92.2 85.3 0.896
3 94.8 89.3 0.851
4 91.3 83.9 0.745
5 92.0 88.3 0.891
6 86.7 81.6 0797

#neigh. 8
image list: 1 86.7 81.6 0.803

2 91.9 85.0 0.836
3 91.8 86.4 0.820
4 89.9 82.6 0.708
5 87.9 84.4 0.762
6 83.7 78.8 0.778

Table 10: 6 predictors agreement with validation
set.

% relative % absolute bias
#neigh. 1

image list: 1 88.4 83.2 0.897
2 90.2 83.4 0.842
3 92.1 86.7 0.802
4 90.5 83.2 0.690
5 90.2 86.6 0.792
6 87.3 82.2 0.847

#neigh. 4
image list: 1 88.7 83.5 0.821

2 92.0 85.1 0.853
3 93.8 88.3 0.821
4 91.7 84.3 0.692
5 92.3 88.6 0.892
6 80.4 75.7 0.727

#neigh. 8
image list: 1 86.8 81.7 0.837

2 92.0 85.1 0.844
3 92.0 86.6 0.846
4 87.9 80.8 0.741
5 89.0 85.4 0.833
6 79.4 74.8 0.712

Table 11: 8 predictors agreement with validation
set.
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Figure 12: Example cloud masks using 6 predic-
tors and 4 neighborhoods. Black denotes Uncer-
tain, blue denotes Clear, and white denotes Cloud.

sults are when using four clusters. This is likely due
to the cluster training set having four types of im-
ages. It is also clear that using eight clusters only
improves performance when a four predictors are
used. This is due to the fact that when the training
set is partitioned over eight clusters the neural net-
work for each is being over trained. Note that some
of the clusters have only several examples from the
seed training sets and only a few hundred consid-
ering the entire training set. Using eight or more
neighborhoods would likely improve performance if
we had a larger and more varied training set.

On a final note, the current approach is usable as
a quality control agent for other algorithms. Addi-
tional network inputs could be a pixel’s designation
from other more traditional approaches Keller et al.
(2006), Ogler et al. (1991), and Long et al. (2006).
In these cases the networks would be post pro-
cessors and overall quality control agent for these
other algorithms. This would provide a straight for-
ward means of incorporating meta data and hu-
man knowledge into these traditional imaging algo-
rithms. Thus that with little change to current al-
gorithms and software improved performance could
be attained for negligible cost.
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