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1. INTRODUCTION 
 
The retrieval of raindrop size distribution (DSD) from 
polarimetric radar data (PRD) has the potential to 
improve the quantitative precipitation estimation 
(QPE), understanding precipitation microphysics and 
quantitative precipitation forecasts (QPF) (e.g., 
Brandes et al. 2004). Radar measurements and the 
retrieval model contain errors, which lead to errors in 
the retrieved DSDs. For example, if the retrieval 
model is based on the assumption of pure rain while 
the radar echoes sometimes includes snow, hail or 
non-hydrometeor effects, the retrieved DSD will be 
incorrect. In practice, however, it is difficult to know 
measurement and model errors. The Bayesian theory 
offers a promising method of optimizing the use of 
PRD for DSD retrievals. Using the prior information 
of measured DSDs, the Bayesian approach provides 
not only the mean values of DSD parameters, but also 
their standard deviations, which determine the 
reliability of retrievals. Two factors are required for 
the success of the Bayesian approach. The first one is 
the use of appropriate state parameters and 
conditional/forward model. The other one is the 
correct prior information of the rain. 
 
Compared to retrieving the integral rain variables, it is 
more efficient to retrieve the parameters of a DSD 
model. The DSD is usually modeled by the gamma 
distribution as 

! 

N (D) = N 0D
µ
exp("#D)          (1), 

where the number concentration parameter is N0, the 
distribution shape parameter µ, the slope parameter Λ. 
Using the constraining relation by Cao et al. (2007), 

the gamma DSD model degrades to the two-parameter 
model and can be retrieved from the radar measured 
reflectivity at horizontal polarization (ZH) and 
differential reflectivity (ZDR). The constraining 
relation is 

! 

µ = "0.0201#2 + 0.902# "1.718     (2). 
 
The two-dimensional video disdrometer (2DVD) is 
capable of measuring the DSD with accuracy (Kruger 
and Krajewski, 2002). Since May 2005, DSD data of 
more than 30,000 minutes have been collected in 
central Oklahoma. These observations from three 
2DVDs provide sufficient data to obtain valuable 
prior (physical and statistical) information of DSDs. 
 
In this study, we present the results of DSD retrievals 
from ZH and ZDR measured by the S-band (10.7 cm) 
radar. The state parameters are chosen as Λ and N0 but 
with appropriate forms. The prior probability density 
function (PDF) of state parameters and the standard 
deviations (SD) of ZH and ZDR, which are based on 
pure rain, are derived from 2DVD observations.  
 
2. RETRIEVAL ALGORITHM 
 
2.1 Bayesian approach 
Define x to be the state vector, which represents the 
rain physics and need to be retrieved from the radar 
measurements. Define y to be the measurement 
vector. According to the Bayesian theorem, the 
posterior conditional PDF Ppost(x|y) is given by  

! 

Ppost x y( ) =
Pf y x( ) "Ppr (x)

Pf y x( ) "Ppr (x) "dx#
       (3), 
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where Ppr(x) is the prior PDF of state x and Pf(y|x) is 
the conditional PDF of the observation y, given the 
state x. The expected value E(x) and the standard 
deviation SD(x) are then calculated by the integration 
over the whole range of state x as    

! 

E(x) =
x "Pf y x( ) "Ppr (x) "dx#
Pf y x( ) "Ppr (x) "dx#

        (4), 

! 

SD(x) =
x " E(x)( )

2
#Pf y x( ) #Ppr (x) #dx$

Pf y x( ) #Ppr (x) #dx$
   (5). 

In this study, x = [N0
*, Λ*] and y = [ZH, ZDR]. The N0

* 
is equal to log10N0 and the Λ* is equal to Λ0.25. The 
reason why nonlinear transformations of two DSD 
parameters are applied is stated in subsection 2.3. 
 
2.2 The forward model  
To simulate the radar measurements from a rain DSD, 
we assume the radar wavelength is 10.7 cm (S-band), 
the raindrop temperature is 10 °C and the standard 
deviation of the raindrop’s canting angle equals zero. 
According to Zhang (et al. 2001), the ZH, the 
reflectivity at vertical polarization (ZV) and ZDR are 
calculated as  

! 

ZH ,V =
4"4

# 4 Kw

2
fa,b (# )

2
N (D)dD

0

$

%   (6), 

and     

! 

Z
DR
(dB) = log10

Z
H

Z
V

        (7), 

where fa(π) and fb(π) respectively represent the 
backscattering amplitude for horizontal and vertical 
polarization, λ is the wavelength, Kw = (εr-1)/ (εr+2) 
and εr is the complex dielectric constant of water. The 
fa(π) and fb(π) were calculated based on the T-matrix 
method and Rayleigh scattering approximation. The 
results of the scattering amplitude were stored as a 
lookup table with regard to a number of equivalent 
diameters. The lookup table provides a convenient 
way to calculate the radar variables, given a DSD.  
 

The integral rain variables: total number 
concentration (NT), median volume diameter (D0), 
and rainfall rate (R) are calculated as follows. 

! 

N
T

= N(D)dD
0

"

#              (8), 
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R =
"

6
D
3
N (D)v(D)dD

0

#

$          (9), 
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D
3
N (D)dD

0

D0

" = D
3
N (D)dD

D0

#

"      (10), 

where v is the empirical terminal velocity proposed by 
Brandes (et al. 2002).  
 
2.3 The prior distribution of DSD parameters  
In order to obtain the prior information of N0 and Λ, 
DSDs measured by the 2DVD were fitted to the 
gamma distribution using the 2nd, 4th, and 6th DSD 
moments, following the method of truncated moment 
fit described by Vivekanandan et al. (2004).  
 
The distributions of N0 and Λ are greatly skewed and 
have large dynamic ranges so that it is not appropriate 
to directly use N0 and Λ as state parameters. For 
example, the physical property of the DSD varies 
greatly when Λ is small while the rain is mostly light 
with the narrow DSD when Λ is large (>10). That is, 
the physical property varies nonlinearly with Λ 
increasing linearly. Therefore, it is necessary to 
transform the evaluating range to distinguish the 
different physical processes. In order to reduce their 
dynamic ranges and mitigate the nonlinear effects, 
N0

*=log10N0 and Λ*=Λ0.25 are used. The occurrence 
frequency of N0

* and Λ* is shown in Fig 1. The 
dynamic ranges of N0

* and Λ* for light rains are 
reduced greatly and the dynamic ranges for 
moderate/heavy rains relatively account for more 
proportion than the ranges of N0 and Λ. It is seen that 
both distributions are close to the Gaussian 
distributions. For this reason, N0

* and Λ* were chosen 
to be the state parameters for the retrieval.  
 



Fig. 2 shows the contour of the occurrence frequency 
based on the fitted DSD parameters. The joint PDF of 
N0

* and Λ* is equal to the normalization of this 
distribution. It is shown that most of DSDs have the 
N0 between 103-105 # m-3 mm-1 and the Λ around 2-6. 
 
2.4 The conditional distribution 
The conditional PDF Pf(y|x) is assumed to follow a 
bivariate-normal distribution as  
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where ρ is the correlation coefficient between ZH and 
ZDR. For rain DSD data, the correlation between ZH 
and ZDR is not low. As to PRD, however, ZH and ZDR 
errors have little correlation. As an approximation, it 
is reasonable to assume ρ=0 for PRD and results do 
not have much difference.  
 
It is worthwhile to note that in Eq. (11) ZH and ZDR 
are functions of N0

* and Λ*, and the expected value 
and standard deviation are also functions of them. It is 
difficult to find the exact form of the latter functions. 
In practice, we use the DSD data to approach this 
problem. In order to compute the integration of Eqs. 
(4) and (5), we discretize N0

* by the interval 0.1 and 
Λ* by the interval 0.05. Therefore, according to the 
distribution shown in Fig. 2, we are able to estimate 
the SD and E values for each pair of discrete N0

* and 
Λ*. The contours of the estimated SD(ZH) and 
SD(ZDR) are shown in Fig. 3. According to Figs. 2 
and 3, the most frequent DSDs have SD(ZH) around 3 
dBZ and SD(ZDR) about 0.3 dB. We store all these 
values along with the prior joint PDF in the form of 
the lookup table for the retrieval algorithm.  

 

 

Fig. 1 Histogram of estimated DSD parameters 
based on 2DVD data: a) N0

*, and b) Λ*.  

 

Fig. 2 Contour of the occurrence frequency of joint 
estimated DSD parameters.   
 
3. RESULTS 

According to DSDs measured by 2DVDs, we 
simulate the radar measurements ZH and ZDR and 
apply them to retrieve DSDs. With retrieved E(N0

*) 
and E(Λ*), mean values of rain variables are 

(a) 

(b) 



calculated. Fig. 4 shows one-one plots of retrieved 
values versus observations. It is seen that the values 
of retrieved R are very close to the observations. The 
table lists the bias and correlation coefficient between 
them, given the R< 80 mm h-1. The bias of retrieved R 
is only -1.66% and the correlation coefficient is as 
high as 0.984. There are also satisfactory retrievals for 
variables D0 and NT. The scattering in Figs. 4b and 4c 
are mainly attributed to the constrained DSD model, 
which is inherently a two-parameter model only and 
cannot represent real DSDs perfectly. The 
performances of the Bayesian retrieval for R and D0 
are obviously better than the results of direct retrieval 
algorithm (Cao et al. 2007, Table 3). It implies that 
the use of prior information mitigates the error effect 
and improves the retrieval. 

 

 

Fig. 3 Contour of the estimated standard deviations 
(SD) of a) ZH (dBZ) and b) ZDR (dB).     

 

 

 

Fig. 4 One-one plot of the retrieved values versus 
observations: a) R, b) D0, and c) NT 
 

 

Table: Bias and correlation coefficient for retrievals 

vs. observations (R< 80 mm h-1) 

 R (mm h-1) D0 (mm) NT  (# m-3) 

Bias (%) -1.66 -5.71 -19.40 

Corr. Coef. 0.984 0.817 0.813 

(a) 

(b) 

(c) 

(a) 

(b) 



Fig. 5 shows the occurrence histogram of the 
estimated SD values for rain limited into different R 
ranges. It is seen the estimated SD value tends to 
decrease with the R increasing. For R<3 mm h-1, the 
uncertainty of estimated R could be over 100%. For 
R>10 mm h-1, SD values are normally very small, 
implying that the retrieval algorithm has good 
performance. 
 

 
Fig. 5 Occurrence histogram of retrieved SD values. 
The left column is for values of SD(Λ*) and the right 
column is for SD(N0

*). The rows from up to down are 
for data within the range of 0<R<3, 3<R<5, 5<R<10, 
10<R<20, and 20<R<100, respectively.  
 
Fig.6 shows RHI images of a stratiform event. ZH, 
ZDR and the cross-correlation coefficient (ρHV) were 
measured by KOUN, an S-band polarimetric radar, 

around the 1030UTC on May 13, 2005. The 
hydrometeor classification is also given in Fig. 6(d). It 
is seen that the melting layer is located at the height of 
about 2-3 km. Within this region, the ρHV is mostly 
less than 0.9, which points out that the mixture of rain 
and snow/hail are present. There are also anomalous 
propagations within the 20 km distance on the 
lowest-level scanning. According to the classification, 
the region above melting layer is mostly the crystal 
and dry snow and the value of ZDR is typically small, 
around 0.3-0.5 dB, which is much less than that of 
rain below the melting layer. The value of ρHV, 
however, is close to 1 for both regions above and 
below the melting layer.  
 
Fig. 7 displays RHI images of retrieved results. As 
shown in Fig. 6(c) and 6(d), a clear boundary is 
evident at the height of 3 km. Above the height of 3 
km, SD values are larger than those below the 
boundary. The above region includes dry snow, 
graupel and crystals, for which SD values are 
obviously larger than normal values for rain (Fig. 5). 
For the region of the anomalous propagation, SD 
values are also much larger than those for rain. These 
large SD values imply that the rain is not probably 
present there and the retrieved R and D0 are not 
reliable. It is worthwhile to note that there is one 
exception for non-rain echoes. For the wet snow 
region located at the melting layer, the algorithm still 
gives low SD values. It is implied that other PRD, 
besides ZH and ZDR, are needed to discern the wet 
snow region.   
 
4. SUMMARY 
The Bayesian retrieval algorithm introduced in this 
study is an optimized algorithm. It only needs ZH and 
ZDR to estimate the DSD parameters and consequently 
other rain variables. The estimation is optimized 
based on the prior information provided by the 2DVD 
measurements. The accuracy of the 2DVD 
measurements and the sufficiency of the data ensure 



the right prior PDF. The algorithm is based on the rain 
model and it has the potential to distinguish the rain 
from other types of hydrometeors by evaluating the 
variance of the estimated DSD parameters.  
  
Compared to existing algorithms of direct rain 
retrievals, the Bayesian algorithm gives not only the 
mean of DSD parameters but also their variances, 
which indicate the reliability of the retrieval. 
Compared to algorithms of variational analysis, the 
Bayesian algorithm has computation efficiency and is 
convenient to be applied for S-band radars, for which 
the attenuation is not significant such that the 
attenuation correction can be neglected.  
 
In future work, the DSD retrieval algorithm will be 
improved by assimilating PRD into NWP models for 
the optimal retrieval using spatial and model 
constraints. 
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Fig. 6 RHI image of a) ZH, b) ZDR,, (c) ρHV and (d) 
hydrometeor classification measured by KOUN radar 
around 1030UTC on May 13, 2005. The main 
classifications of hydrometeors in (d) are light rain 
(LR), moderate rain (MR), heavy rain (HR), rain/hail 
(RH), big drops (BD), dry snow (DS), wet snow (WS), 
horizontal crystal (HC), vertical crystal (VC), graupel 
(GR).  

 

 

 

 
Fig. 7 RHI images of retrieved a) R (mm h-1), b) D0 

(mm), c) SD(Λ*), and d) SD(N0
*).  
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