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ABSTRACT 

In this study, a variogram is used to analyze the spatial 
structure of the Air Force Weather Agency’s (AFWA) 
Agricultural Meteorology (AGRMET) soil moisture model 
output and in-situ Oklahoma Mesonet soil moisture 
data.  The spatial variability information is then used by 
a Kriging method to estimate soil moisture at unsampled 
locations.  The spatial decorrelation length scale of soil 
moisture is critical for the initialization in 4-dimensional 
variational (4DVAR) data assimilation research.  The 
decorrelation length of soil moisture is seen to vary 
according to precipitation.  Pre-precipitation regimes 
have a higher length than post-precipitation regimes 
indicating that precipitation storm-scales drive soil 
moisture spatial structures.  The In-situ measurement 
systems used in this study were originally considered to 
be research-grade soil moisture networks, but were 
found to be susceptible to quality control issues.  Under 
such conditions, techniques such as the Kriging method 
described in this study mitigate some of the quality 
control errors with appropriate geostatistical information.  
The effect of precipitation events on the spatial 
geostatistical structure (decorrelation length and sill) 
was observed.   

Keyword: Soil moisture, Kriging, Variogram, AGRMET, 
Oklahoma Mesonet, Data assimilation  

1 INTRODUCTION 

Spatially and temporally varying soil moisture is being 
increasingly used as input to hydrological and 
meteorological models.  In meteorology and climate 
studies, soil moisture directly affects the partitioning of 
energy at the surface between latent and sensible 
heating.  Evaporation predominates at higher soil 
moisture levels adding to atmospheric moisture content.  
Weather prediction models therefore require extensive 
information about the interaction between atmosphere 
and land surface processes.  Several research groups 
are examining new methods, including satellite remote 
sensing and data assimilation, to provide this key 
information to the forecast models (Jones et al. 2004; 
Reichle et al. 2007).  In addition, global climate change 
can be monitored through broader knowledge of 
accurate soil moisture content (Engman; Chauhan 
1995) 

 

The variogram structure consists of the nugget (the 
variance at zero lag distance), sill (the variance to which 
the variogram asymptotically rises), and decorrelation 
length (range of spatial dependence).  The decorrelation 
length varies based on minimum distance between 
sampling locations and size of sampled area (Western; 
Bloschl 1999).  In this study the average distance 
between adjacent in-situ (Oklahoma Mesonet network) 
soil moisture sites is 51 km and is comparable to the 
grid resolution (47 km) of AGRMET soil moisture data 
as well as the spatial resolution of the WindSat satellite 
microwave data, which is the data source of the 4DVAR 
methodology related to this study.  This distance is also 
approximately equal to precipitation storm-scales, which 
drive the soil moisture spatial structures (Hoff 2001), 
and therefore demonstrates that WindSat and other 
satellite-based microwave soil moisture sensors are 
useful even at these relatively crude resolutions.   

The geostatistical studies for soil moisture variability 
(Anctil et al. 2002; Bardossy; Lehmann 1998; Herbst; 
Diekkruger 2003; Wang et al. 2001; Western; Bloschl 
1999; Western et al. 1999) are carried out at  the scales 
of small catchments areas (1-5 km2).  Thus, the areal 
extent of these studies is too small for robust soil 
moisture analysis at precipitation scales as well as 
spatial scales of soil moisture retrieval from passive 
microwave satellite data.  Also a rigorous quality control 
tool is developed in this study to eliminate non-
responsive sensors.  This quality control is based on the 
autocorrelation relationship between precipitation and 
soil moisture change.  Additionally AGRMET model 
output is compared against Oklahoma Mesonet in-situ 
soil moisture data using geostatistical methods for a 
period of 30 days during September 2003. 

This research is part of the overall goal (Fig. 1) of 
development and validation of 4DVAR systems to bring 
new data into the forecast models.  The 4DVAR system 
will be used to retrieve soil moisture using WindSat and 
future National Polar-orbiting Operational Environmental 
Satellite System (NPOESS) satellite data.  There are 3 
primary components to this study: 1) a subjective 
intercomparison between modeled (AGRMET) and 
Oklahoma Mesonet soil moisture data sources, 2) 
estimation of the decorrelation length before and after a 
precipitation event, and 3) an objective spatial 
intercomparison analysis that employs a Kriging 
geostatistical technique. 

2 DATA 

For the study, the time period of September 1-30, 
2003 was chosen. A strong front with associated 
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precipitation crossed the Midwest during the month, 
allowing observation of soil moisture both before and 
after a heavy rain event, including observations during 
the drying period. Many locations experienced at least 
two significant rain events. 

2.1 AGRMET Model 

The AGRMET soil moisture model output was used in 
this study (AWFA 2002). AGRMET is a near real-time 
global land surface analysis model at 47 km resolution. 
One of its unique features is that it produces a 3 hourly 
Special Sensor Microwave Imager (SSM/I) rain estimate 
as one of several sources of estimated precipitation. 
One of the products is soil moisture at four soil layer 
depths: 0-10 cm, 10-40 cm, 40-100 cm and 100-200 cm.  
In order to compare model output with in-situ data, a 
110 km by 63 km grid box was centered over each site 
and averaged. This is shown in section 3.3. The soil 
moisture data from the AGRMET model is also used for 
the Kriging analysis of section 4. 

2.2 In situ Oklahoma Mesonet 

In-situ measurements of soil moisture was collected 
from the Oklahoma Mesonet (Brock et al. 1995). This 
state-wide monitoring network was originally set up by 
Oklahoma State University agricultural scientists to 
expand the use of weather data in agricultural 
applications and the needs of University of Oklahoma 
scientists to plan and implement a flood warning system 
in Tulsa. Currently, the network has at least one site in 
each county, measuring a variety of weather 
parameters.  Since these datasets were not collected 
with satellite or model calibration in mind, we must 
understand the strengths and limitations of each dataset 
in order to properly compare in-situ measurements with 
satellite-based or model-based results. 

Soil moisture is measured at each site at depths of 5 
cm, 25 cm, 60 cm and 70 cm. The documentation 
mentions data quality issues at the two lower depths, so 
we concentrated on the top two depths.  There are also 
local issues with respect to soil texture and vegetation. 
A site having more clay tends to have lower soil 
moisture change (thus lower infiltration rates) compared 
to a site which is sandier. Also, clay sites typically 
generate more runoff than a site with higher sand 
content. Similarly, areas with more vegetation hold more 
water within their roots than do bare soil. Due to all 
these variations, we are primarily concerned with signal 
response than with absolute calibration or ‘truth’. 

2.3 Oklahoma Mesonet Data Screening and 
Quality Control 

Because of its extensive network the Oklahoma 
Mesonet has the number of stations and spatial extent 
for meaningful use of the Kriging technique.  While 
analyzing the Oklahoma Mesonet soil moisture data, we 
observed that some of the data at some of the sites 

were either unrealistic or had little soil moisture change 
throughout the month of study. Some of the sensors did 
not respond to high precipitation events that occurred 
during the study period. This could be attributed to 
saturated soil, sensors malfunctioning underground or 
calibration issues. In this study, it is a prerequisite that 
such sites (sensors) be removed from further spatial 
analysis. Therefore, we developed a response function 
to eliminate the bad soil moisture sensors based on 
threshold limits.  The response function is based on the 
cross-correlation of change in soil moisture with respect 
to precipitation events occurring during the study period. 

The locations of filtered sites after applying the 
response function to all Oklahoma Mesonet sites are 
shown in Fig. 2.  For sake of simplicity in the 
geostatistical analysis, the four sites in panhandle area 
of Oklahoma State were not selected.  The application 
of this response function has been limited by available 
soil moisture data (30 days) for each Oklahoma 
Mesonet location.  The average number of precipitation 
events occurring at each site varies between 2 to 7.  
However, some of the precipitation events have less 
than 5 mm of total rainfall during events, which may not 
lead to changes in soil moisture measured at 5 cm 
below the surface.  Hence such events were not 
considered when developing the response function.  An 
improved evaluation of this response function would 
require additional months of soil moisture data. 

Mean soil moisture values are higher after 
precipitation events with higher variance being observed 
during wet periods after precipitation (Fig. 3).  This could 
be due to spatially varying soil hydraulic properties 
creating differential infiltration rates during wet periods 
following rainfall, causing larger variation in soil 
moisture.  Smaller variation is observed during dry 
periods where soil-related variability becomes minimal 
(Reynolds 1970).  The AGRMET model underestimate 
the soil moisture compared to in situ measurements.  
However, the differences between average soil moisture 
values are smaller after precipitation or in wet soil 
conditions between both datasets.  The variance of soil 
moisture was increasing during precipitation events for 
Oklahoma Mesonet data compared to more stable 
variance in the AGRMET data.  Based on the trend (Fig. 
3), it can be concluded that higher drying rates have 
been considered in the AGRMET model. 

3 GEOSTATISTICAL ANALYSIS OF SOIL 
MOISTURE DATA 

After performing an initial quality assessment of the 
various in situ data sets and AGRMET output, a more 
detailed geostatistical analysis was performed to better 
quantify important spatial statistics, as well as to provide 
a more objective performance assessment that can be 
used directly within the 4DVAR analysis as constraints 
on the background information provided by the 
AGRMET output.  The AGRMET and in-situ data 
available in latitude and longitude coordinates were 
converted to distance in km from the reference 



coordinates set at 100° W longitude and 33.5° N 
latitude.  

The experimental variogram characterizes the spatial 
variability in the measured data. This variogram is used 
in Kriging to determine soil moisture values at 
unsampled locations.  This section first describes the 
effect of selection of active separation distance for best 
model fitting. The second part compares the variogram 
and its elements for AGRMET and Oklahoma Mesonet 
soil moisture data.  The last subsection covers the 
performance of the Kriging approach in determining soil 
moisture at unsampled locations. 

One of the major issues in variographic analysis is the 
selection of total lag distance for variogram fitting to 
experimental data.  As the separation distance 
increases, after half of the total separation distance, the 
variogram starts to decompose at larger separation 
distances due to the reduced availability of pairs.  Thus 
to obtain robust estimation of the variogram, we ignored 
pairs at larger separation distances that usually have 
smaller variance.  The separation distance is selected 
based on the criterion that 95% pairs should have been 
used for variogram model fitting.  The effect of removing 
data pairs at larger separation distance significantly 
improves variogram model fitting to the Oklahoma 
Mesonet and AGRMET soil moisture data.  

3.1 Variogram analysis of soil moisture data 

The fitting of the appropriate model to the 
experimental variogram data is the most important step 
in geostatistical analysis. The fitting of the model can be 
done by personal judgment, or an automatic procedure 
can be followed to reduce subjectivity and to increase 
reproducibility. Different models can be fitted to the 
experimental semi-variance values. The most commonly 
used models, linear, spherical, exponential and 
Gaussian, were chosen to fit the experimental semi-
variance plot, generated from soil moisture data, using 
least squares curve fitting.  The elements of each 
variogram model and the regression coefficient R2 of the 
fitting procedure were determined.  The model with the 
higher value of R2 was selected as an appropriate 
model to represent the sample semi-variogram.  Based 
on the data, the Gaussian variogram model was the 
best fit for the AGRMET soil moisture data while the 
spherical model was better suited to the Oklahoma 
Mesonet in-situ soil moisture data.  This is due to the 
smoothing may have been already occurred in 
AGRMET data due to its information source, i.e. Special 
Sensor Microwave/Imager (SSM/I), having a resolution 
of ~50 km.  Most of the variograms fit with non-zero 
nuggets.   

The Oklahoma Mesonet variogram contains an outlier 
with exceedingly high semi-variance resulting from a 
large difference in soil moisture between the two closest 
pairs of observation (PORT and HASK; PERK and 
STIL).  Although these stations show appropriate 
variations in soil moisture with precipitation sensor 
calibration and soil type variation can have a significant 

influence on the semi-variance.  Additionally the number 
of samples at this small separation distance is not 
statistically significant as there are only two data points 
available. Similar observations for nearby samples were 
also made by Hollingsworth and Lönnberg (1986). 

The largest change in isotropic variogram properties 
for AGRMET and Oklahoma Mesonet soil moisture data 
was observed after heavy precipitation on day 254 
compared to day 253.  Variograms were generated for 
all days of September 2003 for AGRMET and Oklahoma 
Mesonet soil moisture data.  The comparison of 
decorrelation length and average soil moisture shows 
the effect of precipitation on change in decorrelation 
length (A0).  The decorrelation length is higher for dry 
periods before precipitation and decreases with 
increasing soil moisture during and after precipitation 
events. 

The time series comparison of decorrelation length 
estimated for AGRMET and Oklahoma Mesonet (Fig. 4), 
shows that decorrelation length is higher in the case of 
AGRMET soil moisture data.  However, the 
decorrelation length matches at two instances, 
specifically after precipitation events. The larger 
decorrelation in the case of AGRMET compared to 
Oklahoma Mesonet data is due to AGRMET’s spatial 
averaging versus the point sampling for the Oklahoma 
Mesonet data. 

3.2 Kriging Performance Assessment 

Kriging provides optimal interpolation of soil moisture 
at grid points in a spatial domain based on 
autocorrelation in the variograms.  The theoretical 
variogram model (Gaussian, spherical, exponential, or 
linear) that best fits the experimental variogram of 
AGRMET and Oklahoma Mesonet data was selected for 
soil moisture mapping using the block Kriging technique 
(Webster; Oliver 2001).   

A jack-knifing method was applied to evaluate the 
performance of the Kriged data at different locations of 
the Oklahoma Mesonet when compared with true soil 
moisture values. The jack-knifing method is a process 
where a small set of stations that have been selected for 
the comparison study are left out and not used to 
generate the variogram and Kriging soil moisture 
estimates.  This method ensures unbiased validation of 
the Kriging estimates by examining and quantifying the 
errors associated with estimating soil moisture using the 
Kriging process.  The estimated value at the selected 
Oklahoma Mesonet stations was obtained by creating a 
semi-variogram and Kriging estimated using information 
from the rest of the sites.  This procedure provided 
measured and estimated values for each sample 
location, so that actual estimation errors could be 
computed and compared. To test the performance we 
selected 10 sites (15% of total sites) out of 74 sites 
randomly distributed across the Oklahoma Mesonet 
area (Table 1).  Thus, a list of measured values and 
interpolated values was obtained for the set of stations, 
and the distribution of errors was analyzed. The 



measured values were compared with the interpolated 
values and the bias, and root mean square errors 
(RMSE) were calculated.  

No trends in bias and RMSE, specific to the wet and 
dry periods were observed at the locations.  During the 
month, mostly positive biases were observed at KING, 
MARE, MAYR, and MEDI.  The negative bias observed 
at KETC, MIAM, MINC, NOWA, and OKEM. LAHO and 
OKMU sites were small.  The average RMSE of 10 
jackknifed sites was found to be 3.4% through 
September 2003 (Table 1).  Larger RMSE (~5.5%) were 
observed at KETC, MEDI and MIAM; and lower RMSE 
(about 1-1.5%) were observed at LAHO, MAYR and 
OKMU Mesonet sites. The RMSE values could 
potentially be lowered through use of a co-kriging 
analysis (Webster; Oliver 2001) by including 
precipitation as an additional variable. 

The average root mean square of the difference 
(RMSD) between kriged Oklahoma Mesonet and 
AGRMET soil moisture maps for the study area was 
4.6% of soil moisture.  Higher RMSE was observed 
during drying period which could be due to a higher 
drying rate in the AGRMET model.  Bias is lower than 
RMSD, though the study period follows a similar trend to 
RMSD.  

4 CONCLUSIONS 

We have compared several independent in situ soil 
moisture measurements with the AFWA AGRMET 
model output for areas around the Oklahoma Mesonet 
site for a period of 30 days during September 2003.  
Results indicate a tendency for the AGRMET 
precipitation input estimates to bias the model soil 
moisture results.  This can result in entire rain events 
being omitted or added to the AGRMET output.  When 
the AGRMET precipitation estimate is more realistic, the 
AGRMET soil moisture estimate improves.  In addition, 
some Oklahoma Mesonet sites performed better than 
others as compared to in situ precipitation 
measurements.  The variance of precipitation in 
AGRMET is observed to be smaller than in situ 
precipitation measurements from the Oklahoma 
Mesonet.  A response function for quality control of 
Oklahoma Mesonet data is used to eliminate the soil 
moisture measuring sites which did not respond well to 
precipitation.  Results from our studies indicate that in 
situ soil moisture data are of various quality levels. 
Some data networks experienced > 30% sensor failure 
rates using our more detailed quality control analysis 
procedures. Remaining quality-controlled data sets 
indicated that precipitation inputs were the primary 
cause of discrepancies between the AGRMET model 
output and in situ soil moisture measurements. 
However, in some circumstances soil texture and 
possibly other AGRMET model parameters or inputs 
were suspected of causing inconsistent soil moisture 
output results. In addition, due to the spatial 
representation errors we do not expect perfect model 
versus in situ agreement, although application of 
downscaling methods may be able to partially mitigate 

these errors (Merlin et al. 2006).  We expect that 
improved in situ sensor calibration and quality control 
methods would increase the reliably of the soil moisture 
measurements. 

In the future, we intend to perform a more detailed 
spatial analysis to automate the detection of false 
signals within a dispersed soil moisture network.  In 
addition, the quantification of co-variances will be used 
to advance satellite data assimilation experiments 
(Jones et al. 2007).  In particular, the horizontal 
decorrelation lengths determine the sharing of 
information within the 4DVAR cost function which 
directly impacts the data assimilation system 
performance. Previously, without this information, 
educated guesses are typically employed for the 
horizontal scale lengths (Zupanski et al., 2002). This 
can result in two possible data assimilation behavior 
errors: 1) an under-estimate of the horizontal 
decorrelation length scale results in unrealistic 
decoupling of the data assimilation spatial effects, thus 
needlessly increasing the data assimilation system 
errors thereby requiring a stronger remote sensing 
signal strength to compensate for the errors, and 2) an 
over-estimate of the horizontal decorrelation length 
scale results in overly-smooth data assimilation output 
results resulting in lost high resolution soil moisture 
information data. Thus, accurate spatial correlation 
length scale information minimizes the loss of data 
assimilation method accuracy and data signal strength.  
The results contained in this study are fundamental to 
the performance and behaviors of future 4DVAR 
assimilation for soil moisture retrieval using WindSat 
and future NPOESS satellite data, and will also direct 
future research activities toward areas requiring 
additional improvements. 
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Fig. 1: This flow chart shows the application of variogram and Kriging analysis in calibration and validation of soil moisture 

information for data assimilation. 

 



 
Fig. 2: The distribution of AGRMET grid points and Oklahoma Mesonet sites used in the geostatistical analysis. The data is 

described in detail in section 3.4. 
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Fig. 3: The mean and variance of soil moisture measured at Oklahoma Mesonet sites and AGRMET data for study area shows 

peaks after precipitation events on day 244, 254, 264. 
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Fig. 4: Decorrelation lengths are higher for AGRMET compared Oklahoma Mesonet soil moisture data through study period. 



 
Fig. 5: Kriged map of soil moisture for AGRMET data (a and b) and Mesonet data (c and d) generated using semi-variograms.  

Figures (a) and (c) are before precipitation event (253 day), and (b) and (d) for after precipitation event (253 day).   

 

 

 

Table 1: This table shows the performance of Kriging in terms of volumetric soil moisture at each jack-knifed Mesonet site for 
September 2003. The jack knifing procedure is outlined in Section 3.2. 

 

Site Name Latitude Longitude Absolute Bias RMSE Correlation 
Coefficient 

KETC 34.529 -97.765 0.059 0.060 0.81 

KING 35.881 -97.911 0.027 0.030 0.97 

LAHO 36.384 -98.111 0.006 0.008 0.94 

MARE 36.064 -97.213 0.047 0.048 0.86 

MAYR 36.987 -99.011 0.012 0.013 0.80 

MEDI 34.729 -98.567 0.060 0.061 0.94 

MINC 35.272 -97.956 0.023 0.026 0.86 

NOWA 36.744 -95.608 0.027 0.032 0.46 

OKEM 35.432 -96.263 0.025 0.026 0.86 

OKMU 35.581 -95.915 0.011 0.013 0.91 

All Sites -- -- 0.030 0.032 0.84 

 


