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1.  INTRODUCTION 

 
Computational problems that arise when 

treating ice phase microphysics are much more 
complicated than those encountered in models 
with warm rain microphysics. Because of that 
there are only a few mixed phase non-
parameterized cloud models based on solving the 
kinetic equations for size distribution functions of 
water drops, ice particles and aggregates. 
Numerical models with various degrees of 
complexity have been applied extensively in the 
past to investigate various ice nucleation 
mechanisms, ice production rates, and their 
dependence on cloud microphysical structure.  

The collection growth of ice particles is one 
of the most complex problems in mixed-phase 
microphysics, since the resulting type of particle 
may be of a type different from the colliding 
particles. Usually this process is described by a 
system of kinetic collection equations of great 
complexity (Khain and Sednev, 1995; Beheng 
1978; Alheit et al., 1990; Reisin et al., 1995). 

For example, if only aggregates and pristine 
ice crystals are considered, then the quasi-
stochastic equation for aggregates has the form:  
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The first term in (1) is gain term for 

aggregates colliding with aggregates, the second 
term is a loss term for aggregates colliding with 
aggregates, the third term is a gain term for 
aggregates colliding with ice crystals, term 4 is a 
gain term for ice crystals colliding with ice crystals 
and term 5 is a loss term for ice crystals colliding 
with aggregates.  

For pristine ice crystals the quasi-stochastic 
equation is: 
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In (2) the first term is a loss term of ice 
crystals colliding with ice crystals, and the second 
term is a loss term of ice crystals colliding with 
aggregates. In equations (1) and (2) 'cx x x= − , 

( )af x  and ( )if x are the mass distributions for 
aggregates and pristine ice crystals and 

( , ')i cK x x , ( , ')a cK x x  and ( , ')ia cK x x are the 
collections kernels for the collisions of aggregates, 
pristine ice crystals, and aggregates with crystals. 

Within the stochastic framework, the 
aggregation of ice crystals to form snowflakes was 
previously studied by Westbrook et al. (2004). In 
Maruyama and Fujiyoshi (2005) a stochastic 
model for snow aggregation was developed by 
adding an aggregation model to the Monte Carlo 
method of Gillespie (1975). 

When other hydrometeor types are included 
in the analysis, the system of quasi-stochastic 
equations becomes much more complex. For 
example, Khain and Sednev (1995) included 
hydrometeors of seven kinds: water drops, plate-
like and columnar crystals, dendrites, snowflakes, 
graupel and hail. To handle the problem, they  
formulated some rules in case of single acts of 
particles collisions (Khain and Sednev, 1995).  

In order to avoid the solution of the complex 
quasi-stochastic equations, a stochastic 
microphysical framework for calculating the 



 2 
 

collection growth in a mixed phase cloud is 
proposed.   

The stochastic algorithm of Gillespie (1976) 
for chemical reactions in the multicomponent 
formulation proposed by Laurenzi et al. (2002) was 
used to simulate the kinetic behavior of the 
particle population. Within this framework, reacting 
species are defined as ice particles of specific 
mass and crystal habit. The stochastic algorithm 
described in this work was previously used to 
model the evolution of a two-component droplet 
spectrum.  

The proposed stochastic algorithm allows 
the study of the effect of ice crystal type on 
collection growth in mixed-phase clouds and could 
improve cloud parameterizations in models with 
bulk microphysics. 

 
 

2. THE MONTE CARLO ALGORITHM 
 

The stochastic framework, models the 
crystal aggregation as a random, discrete process. 
In our report, the stochastic algorithm of Gillespie 
(1976) for chemical reactions was adopted instead 
of the algorithm previously elaborated for droplet 
populations (Gillespie, 1975). This algorithm was 
reformulated to simulate the kinetic behavior of 
aggregating systems by Laurenzi et al. (2002).  In 
Laurenzi et al. (2002) species are defined as a 
type of aggregate with a specific size and 
composition. In our specific case, species are 
defined as hydrometeors of different types 
(droplets, ice crystals or aggregates) with specific 
mass and aerosol composition.  
             Within this framework, there is a unique 
index µ for each pair of hydrometeors i, j that may 
react (collide). For a system with N species 

( )1 2,, ... , NS S S  
( )1

2

N N
µ

+
∈ . The set { }µ   

defines the total “collision” space, and is equal to 
the total number of possible interactions 
(collisions). With this set the reaction probability 
density function ( ),P τ µ  can be determined.This 

quantity is defined by 
                           ( ),P dτ µ τ ≡  {Probability that at 

time the next reaction (collision) in volume V will 
occur in the infinitesimal interval 
( ),t t dτ τ τ+ + + and will be a µ reaction}.  
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The reaction probability density function is 
the basis of the Monte Carlo algorithm. For 
calculating the evolution of the system, two 
random numbers τ and µ must be generated. 
Equation (3) leads directly to the answers of the 
aforementioned questions. First, what is the 
probability distribution for times?. Summing 

( ),P dτ µ τ  over all µ (all possible collisions, 

(reactions)) results in 
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The probability function for reactions can be 
obtained in a similar way, by integrating the pdf 

( ),P dτ µ τ  over all τ from 0 to ∞ results in 

                                 ( )2

a
P µµ

α
=                        (7) 

Equation (4) gives the probability of a 
particular reaction µ given an interval (τ, τ+dτ). 
Equation (6) shows that the probability of a 
reaction (collision) in time follows an exponential 
distribution, a characteristic of a process in which 
events occurs randomly in time.  
              In order to obtain a random pair (τ, µ), 
according to the probability density function 

( ),P τ µ  we first generate a random number r1 
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distributed uniformly in the interval [0,1], then, the 
inversion method to obtain random numbers is 
applied. In the inversion method this random 
number is taken as the probability of a reaction in 
the time period τ  according to ( )1P τ . This 

probability is obtained by integrating ( )1P τ from 0 

to τ: 
                            

( ) ( ) ( )1 1
0 0

exp 1 expr P x dx x dx
τ τ

α α ατ= = − = − −∫ ∫    (8) 

Considering that 1-r1=r*
1 is also a uniformly 

distributed random number in the interval [0,1], 
then the time τ  can be calculated from (8) in the 
form: 
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The reaction number µ is calculated similarly. A 
random number r2 uniformly distributed in the 
interval [0,1] is generated. Then the pdf ( )2P ν  (7) 

must be integrated over ν  until the addition of the µ probability exceeds the random number r2. The 
inequality to obtain the reaction index µ has the 
form (Gillespie, 1976) 
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The former results lead to the Gillespie’s 
direct algorithm: 

1) Initialize (set initial numbers of species, 
set t=0, set stopping criteria). 

2) Calculate the function aµ for all µ.  
3) Choose τ according to the exponential 

distribution ( ) ( )1 expP dτ α ατ τ= −  

4) Calculate µ according to the distribution 

( )2

a
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α
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5) Change the numbers of species to reflect 
the execution of a reaction. 

6) If stopping criteria are not met, go to step 
2. 

 
3. SIMULATION RESULTS 

 
In order to check the performance of Monte 

Carlo algorithm, a simulation was run considering 
that the only hydrometeor type is droplets.  The 
results from the Monte Carlo algorithm are the 
averages over 1000 realizations of the stochastic 
process. For monodisperse initial conditions, we 
consider a cloud of 1 cm3 volume, initially 
containing N0 droplets of 10 µm. These droplets 

were placed in bin 1 of the size distribution. Fig.1 
shows a comparison between the Monte Carlo 
algorithm and  analytical solutions of the SCE for a 
constant collection kernel. The monodisperse 
initial distribution was set equal to N0=100 cm-3. As 
can be observed, the simulations, yielded the 
same results as the analytical solutions of the 
SCE. 
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Fig.1. The  number of particles averaged over 1000 
simulation runs and normalized to the initial number of 
particles (N0=100), versus time is shown by the dashed 
line. The results from the analytical solution are shown 
by the solid line. 
 

To test the framework for the ice-phase, a 
simplified simulation was running with hexagonal 
ice plates and columnar ice crystals for the initial 
particles. Initial monodisperse distributions with 
concentrations of 50 cm-3 particles for both the 
columnar ice crystals and hexagonal plates were 
considered, with masses for the monomer crystals 
of 10-9 and 10-10g respectively. The cloud volume 
was set equal to 1cm3. Following Khain and 
Sednev (1996), the rules in case of single acts of 
particles collisions for this case are: 
 

• Ice crystal–ice crystal: snowflakes are 
formed. 

• Ice crystal-snowflake: snowflakes are 
formed. 

• Snowflake–snowflake: snowflakes are 
formed, 

  
Terminal velocity of the hydrometeors were 

taken from Pruppacher and Klett (1997). The 
collection efficiency and collection kernels of 
crystal-ice crystal interactions were parameterized 
following Khain and Sednev (1995).  
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Simulations results are the averages over 
1000 realizations of the stochastic process       
(Fig. 2). For the simplified simulation presented in 
this report, an increase in the snowflake 
concentration at the beginning of the simulations is 
observed as a result of the interaction between ice 
crystals. The posterior reduction is a result of the 
snowflake–snowflake interaction. 
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Fig.2. Snowflake concentration averaged over 1000 
simulation runs versus time. 
  

To test further the algorithm, a more 
detailed comparison with averages obtained from 
solutions of the deterministic quasi-stochastic 
equations is needed. The collection algorithm 
described in this work has to be linked with a 
general microphysical framework, in order to 
consider all the processs relevant to precipitation 
formation in mixed phase clouds. 
 
4. CONCLUSIONS 
 

The stochastic algorithm for chemical 
reactions developed by Gillespie (1976) in the 
formulation proposed by Laurenzi et al. (2002) was 
implemented in order to calculate the time 
evolution of hydrometeors in a mixed phase cloud. 
Within this framework, reacting species are 
defined as hydrometeors of specific mass and 
type. The collection algorithm described in this 
work has to be linked with a general microphysical 
framework, in order to consider all the processs 
relevant to precipitation formation in mixed phase 
clouds. 
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