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ABSTRACT

While the Indian monsoon exhibits substantial variabilityon interannual timescales, its in-

traseasonal variability is of greater magnitude and hence of critical importance for predictability

of monsoon rains. This intraseasonal variability comprises a 30–50 day northward-propagating

oscillation (NPISO) between active and break events of enhanced and reduced rainfall, re-

spectively, over the subcontinent. Several recent studieshave implied that coupled general

circulation models (CGCMs) were better able to simulate theNPISO than their atmosphere-

only counterparts (AGCMs). These studies have forced theirAGCM simulations with SSTs

from coupled integrations or observations from infrared instruments onboard satellites, both of

which substantially underestimate intraseasonal SST variability in the tropical oceans.

We have forced the 1.25◦x0.83◦ Hadley Centre Atmospheric Model (HadAM3) with a high-

frequency, observed SST dataset from the U.K. Met Office withgreater intraseasonal vari-

ance in the Indian Ocean than previous products. One ensemble of simulations was forced by

daily observed SSTs and a second with monthly means. When compared, the ensemble with

daily SSTs displayed significantly greater variability in 30–50 day precipitation across the mon-

soon domain, variability much more in-line with observations. Individual ensemble members

contained intraseasonal events with strength, propagation speed, and organization that closely

matched events from a global analysis of precipitation. Even when members from the ensem-

ble with monthly mean SSTs displayed power in intraseasonalrainfall, the events themselves

were weak, disorganized, and failed to move northwards fromthe equator. We conclude that

high-frequency SST anomalies not only increased variance in intraseasonal rainfall, but helped

to organize and maintain the coherent convective events that comprise the NPISO. Further, our

results indicate that an atmosphere-only model can respondto accurate and frequent SST forc-

ing to realistic generate intraseasonal variability. These results have important implications for

simulating the NPISO in atmosphere-only and coupled climate models, as well as predicting

tropical intraseasonal variability in short- and medium-range weather forecasts.
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1. Introduction

a. The northward-propagating intraseasonal oscillation

While the Indian summer monsoon remains one of the most consistent and stable features of the global

climate system on interannual and interdecadal timescales, the monsoon’s intraseasonal variability (ISV) is

far less predictable. Intraseasonal oscillations in the monsoon’s strength are dominated by organized convec-

tive events that form in the equatorial Indian Ocean (EqIO) and propagate north to the Indian subcontinent

(e.g., Annamalai et al. 1999; Annamalai and Slingo 2001). This northward-propagating intraseasonal oscil-

lation (NPISO) has a period of 30–50 days and a speed of approximately 1° latitude day−1 (e.g., Yasunari

1979; Krishnamurti and Subrahmanyam 1982; Gadgil 1990; Lawrence and Webster 2002). Convection over

India is to some extent anti-correlated with the eastern EqIO (EEqIO), such that “active” periods of en-

hanced rainfall over the subcontinent are associated with “break” periods of suppressed convection in the

EEqIO (Hartmann et al. 1992; Annamalai and Sperber 2005). Waliser et al. (1999a) demonstrated that these

recurring active and break events give the monsoon an ISV greater than its interannual variability. Success-

ful long-range prediction of these events would be a great boon to Indian agriculture, primarily for flood and

drought mitigation (Webster and Hoyos 2004).

Recent studies have made some progress towards understanding the physical mechanisms underlying

the NPISO and its propagation, although competing hypotheses persist. Using observations and simple nu-

merical experiments, Wang and Xie (1997) suggested that thenorthward propagation was an artifact of an

eastward-moving Kelvin-Rossby wave packet that tilted northwest-ward with latitude. Similar efforts have

examined reanalysis data and described the meridional propagation as Rossby waves emanating from equa-

torial convection, although disagreements exist over whether the equatorial convection must first propagate

eastward from the western Indian Ocean (Wang and Rui 1990; Annamalai and Slingo 2001; Kemball-Cook

and Wang 2001; Lawrence and Webster 2002). If such propagation occurred frequently, it would imply a

connection between the NPISO and the Madden-Julian Oscillation (MJO; Madden and Julian 1971, 1972).
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Following Madden (1986) and Hendon and Salby (1994), Wang etal. (2005) found that the MJO was too

weak and irregular during the monsoon season to sustain the NPISO, instead proposing a self-induction

mechanism for the NPISO. While the MJO may coexist and interact with the NPISO, it is unclear whether

the MJO forces NPISO events.

b. The effect of air-sea coupling on NPISO simulations

Atmosphere-ocean coupled processes have recently gained support as potential mechanisms for driv-

ing the NPISO. Waliser et al. (2003) concluded that all ten atmosphere-only GCMs (AGCMs) from the

Climate Variability and Predictability program / Asian-Australian monsoon intercomparison project (Kang

et al. 2002) substantially underestimated the monsoon ISV,particularly near the equatorial Indian Ocean,

despite displaying reasonable seasonal-mean rainfall. Anearlier intercomparison study found that many

AGCMs exhibited poor MJO-like variability in northern winter (Slingo et al. 1996). Similar studies with

individual AGCMs have confirmed this deficiency (e.g., Rajendran et al. 2002). Still, the fact that AGCMs

generated intraseasonal events, albeit weak, suggests that the NPISO is an intrinsically atmospheric mode;

the oscillation likely arises from internal atmospheric variability, not coupled processes.

Following many studies that showed air-sea coupling improved simulations of the MJO (e.g., Flatau

et al. 1997; Waliser et al. 1999b; Kemball-Cook et al. 2002; Inness and Slingo 2003; Woolnough et al.

2007), recent efforts have focused on the impact of an interactive ocean on the NPISO. These studies are

justified by observations of Indian Ocean sea-surface temperatures (SSTs) from the Bay of Bengal Monsoon

Experiment (Bhat et al. 2001) and Joint Air-Sea Monsoon Interaction Experiment (Webster et al. 2002) field

campaigns, which showed the passage of NPISO events to be associated with substantial SST variations.

As in the MJO (Woolnough et al. 2000), anomalous SSTs are out-of-phase with anomalous convection,

with warm (cool) SSTs leading enhanced (suppressed) convection by 10–15 days. Anomalies in SST and

convection are linked by a negative feedback involving surface heat fluxes, boundary-layer stability, low-

level winds, evaporation, and moisture convergence (e.g.,Kemball-Cook and Wang 2001; Klingaman et al.
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2007).

Fu et al. (2003) compared a hybrid coupled GCM to its atmosphere-only counterpart and found the cou-

pled model produced a strong NPISO with correct phase relationships (compared to observations) between

SSTs, convection, and surface heat fluxes. The AGCM produceda weaker NPISO and collocated intense

convection with the warmest SSTs, whereas in observations warm SSTs coincide with subsidence, clear

skies, and strong insolation (Fu et al. 2002). This error is common in AGCM simulations of intraseasonal

behavior in the Indian Ocean and in the west Pacific warm pool.Using the same model, Fu and Wang

(2004) demonstrated that coupling substantially improvedthe two- and three-dimensional structure of the

NPISO over an AGCM integration when validated against observations and European Centre for Medium-

range Weather Forecasts (ECMWF) analyses. The authors concluded that AGCMs had little hope of ever

representing observed monsoon ISV due to their fundamentalinability to create and modify the requisite

intraseasonal SST anomalies through convective feedbacks.

Rajendran and Kitoh (2006) obtained similar results with the Meteorological Research Institute (MRI)

GCM. They found that large-scale atmospheric dynamics could account for the existence of the MJO and

the NPISO, but that atmosphere-to-ocean feedbacks amplified the intensity and corrected the phase speed

of propagating convection. The MRI coupled GCM reasonably replicated observed phase relationships be-

tween rainfall, SST, net surface heat flux, latent heat flux, and surface wind stress, while phase relationships

in the AGCM were weaker and temporally distorted. This agrees with Zheng et al. (2004), who employed

the coupled model from the Geophysical Fluid Dynamics Laboratory. Fu et al. (2007) demonstrated that

a coupled GCM could extend NPISO predictability—as measured by the ratio of signal to forecast-error

and by the spatial correlation of anomalies in time-filteredrainfall—by about a week when compared to the

same model without an interactive ocean.

Air-sea coupling does not rectify all errors associated with the NPISO. As for the MJO, errors in the

mean-state can influence simulations of the NPISO. Inness etal. (2003) showed that reducing systematic

errors in the mean state of the Hadley Centre coupled model (HadCM3) could substantially improve sim-

ulations of the MJO. Sperber (2004) also suggested that meanstate errors could project onto intraseasonal
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behavior and so degrade simulations of phenomena such as theMJO and the NPISO. Further, Fu and Wang

(2004) noted that model representations of cumulus clouds,interactions between clouds and incident and re-

flected radiation, boundary-layer processes, and land-surface feedbacks could dramatically affect simulated

intraseasonal variability.

c. Motivation

Although many studies have found a weak and inconsistent NPISO in AGCMs, the SST forcing pro-

vided to the AGCMs in these studies often has exhibited marked deficiencies. Typically, AGCM simulations

have been forced by SSTs from the coupled-model integrations against which the AGCM is to be compared.

Fu and Wang (2004), for example, forced their AGCM with the climatological mean SST from their 10 year

coupled simulation. Where observed SSTs have been used (e.g., Waliser et al. 2003), they have been taken

from the weekly SST analyses produced by the National Centers for Environmental Prediction (NCEP;

Reynolds and Smith 1994). When compared to observations, both coupled-model and NCEP SSTs suffer

from weak intraseasonal anomalies (Harrison and Vecchi 2001; Senan et al. 2001; Sengupta and Ravichan-

dran 2001; Sengupta et al. 2001).

In a study focused on the west Pacific, Bernie et al. (2005) compared a one-dimensional ocean mixed-

layer model to observations from the Intensive ObservationPeriod of the Tropical Ocean Global Atmosphere

Coupled Ocean-Atmosphere Response Experiment. They concluded that to capture the intraseasonal SST

variability required an ocean model to be forced by diurnally varying heat fluxes and to have a low thermal

inertia in the mixed layer, equivalent to a fine vertical resolution. As most coupled climate models used to

simulate the NPISO had a top ocean layer on the order of 10 meters thick and were coupled only once per

day, the intraseasonal SST anomalies that have been used to force the corresponding AGCM experiments

were far too small; Bernie et al. (2005) suggested that a vertical resolution of one meter and three-hourly

coupling are required to capture of order 90% of the observedintraseasonal SST variability.

The large errors in these SST products have left unresolved the underlying question of the ability of an
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AGCM to simulate the NPISO given reasonably accurate, high-frequency SST forcing. While it is ques-

tionable whether an AGCM would simulate the observed phase relationship between anomalous SSTs and

convection even with “perfect” SSTs, it may be that realistic SST anomalies could improve the poor ISV

in precipitation. Further, an observed SST dataset of high temporal resolution would allow examination of

the effect of high-frequency (e.g., daily or weekly) SST anomalies on the NPISO. The tropical sea surface

evolves quickly and is tightly coupled to convection and rainfall, so an assessment of the multi-scale inter-

actions of SST and rainfall would be valuable. This type of experiment is possible in an atmosphere-only

model, in which SSTs are prescribed and their temporal variability can be controlled. Sensitivity experi-

ments with high-frequency SSTs have been conducted using coupled-model SSTs (Fu and Wang 2004) and

the NCEP analysis (Liess and Bengtsson 2004), but given the issues noted above a new experiment with

observed SSTs with accurate intraseasonal variability is certainly warranted.

In the absence of a full three-dimensional ocean model proven to predict intraseasonal SST variations

of the correct magnitude, we conduct two ensembles of simulations with the Hadley Centre atmosphere

model (HadAM3) at high horizontal resolution. These ensembles are forced by a new SST dataset with fine

spatial and temporal resolution. Our primary interest is todetermine the extent to which high-frequency SST

variability influences NPISO-like behavior. To that end, wehave forced one HadAM3 ensemble with daily

SSTs and the other with monthly means. By comparing simulated NPISO events against observations, this

experimental design also allows an investigation of the AGCM’s representation of the NPISO when forced

by some of the most-accurate SSTs available. The model and the two ensembles are described in Section 2;

we provide the results of our experiments and compare individual ensemble members to observations in

Section 3. We discuss the implications of our results concerning high-frequency SSTs, particularly the

implications for coupled models and experiments, in Section 4 and summarize our key findings in Section 5.
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2. Model and methods

a. The Hadley Centre Atmospheric Model

All experiments in this study were performed with a high-resolution version of the Hadley Centre At-

mospheric Model (HadAM3). The model is configured as described in Pope et al. (2000), except that the

spatial, vertical, and temporal resolutions have been increased to 1.25° longitude by 0.83° latitude, 30 levels,

and 10 minutes, respectively; the spatial resolution is therefore N144L30. Inness et al. (2001) demonstrated

that increasing the vertical resolution of HadAM3 from 19 to30 levels was beneficial to the intraseasonal

variability of convection. Similarly, Liess and Bengtsson(2004) found that increasing the vertical resolu-

tion of the Hamburg atmospheric model (ECHAM4) from 19 to 30 levels improved the phase speed of the

intraseasonal oscillation, and suggested that finer vertical resolution would be particularly important at high

horizontal resolutions. Stratton (1999) studied the effect of the N144L30 resolution on the previous version

of HadAM (HadAM2b) and concluded that the higher resolutionimproved the model variability, bring-

ing the model closer to the ECMWF Reanalysis (ERA-40), whichuses a similar spatial resolution. Some

systematic errors were also reduced, but many (e.g., precipitation) were found to be resolution-independent.

b. Sea-surface temperature forcing

This study is among the first to make use of SST analyses produced by the Global Ocean Data Assim-

ilation Experiment (GODAE) High-Resolution Sea-Surface Temperature (GHRSST) project (Donlon et al.

2007). GHRSST provides an assimilation method that combines in-situ measurements (e.g., buoys and

ships) with those from several microwave and infrared satellites, including the Tropical Rainfall Measuring

Mission (TRMM) Microwave Imager (TMI). This study uses the Operational Sea-surface Temperature and

sea-Ice Analysis (OSTIA) product from the U.K. National Centre for Ocean Forecasting. The analysis is

available daily at 1/20° spatial resolution, or approximately 6 km. (Data may be obtained from http://ghrsst-

pp.metoffice.com.) OSTIA is produced through a persistence-based optimal interpolation system (Lorenc
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1981) using all data sources available to the GHRSST project(Donlon et al. 2007).

Due to the novelty of this product, SSTs were available for only one year: February 2005–January 2006.

Preliminary comparisons against buoy data indicate that the OSTIA analyses have a root-mean-square error

of 0.5°C and a cold bias of 0.15°C at a single point. The high spatial and temporal resolution of this dataset,

combined with its use ofin-situ data and microwave satellites that can estimate SSTs through clouds more

accurately than infrared instruments, make the OSTIA analyses far more accurate than the SST datasets

frequently used to force atmosphere-only GCMs.

c. Experiment design

We conducted two 30 member ensembles of HadAM3 forced by the OSTIA SST analyses. The first

ensemble was forced by the daily OSTIA dataset and so includes high-frequency SST variability; this will

be referred to as the “Daily ensemble.” The second ensemble was forced by monthly-mean OSTIA SSTs

linearly interpolated to daily values and will be referred to as the “Monthly ensemble.” The monthly-mean

SST forcing was calculated using the AMIP II method so that the monthly-mean SSTs in the Daily and

Monthly ensembles were equal at every grid point (Taylor et al. 2000). The OSTIA analyses were area-

averaged to the HadAM3 spatial resolution and the masking value for sea-ice—used to estimate sea-ice

coverage—was altered appropriately to account for the area-averaging. SSTs and sea ice in both ensembles

were updated once per day.

The SSTs used to force the Daily ensemble have substantial variability in the 30–70 day intraseasonal

band during the monsoon season (June–September, “JJAS” hereafter), particularly in the Bay of Bengal and

the Arabian Sea, where values approach 0.5°C (Figure 1a). Inthe eastern Bay of Bengal the 30–70 day

variability accounts for more than 50% of the total SST variability. Variability on the equator is much

weaker, but Klingaman et al. (2007) found weak equatorial SST anomalies associated with the northward-

propagating intraseasonal oscillation when using TMI SST analyses. The large values off the coast of Africa

are due to the spin-up of the Somali Jet at the beginning of themonsoon season, which leads to substantial
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coastal upwelling and widespread evaporative sea-surfacecooling in June (Webster et al. 1998; Schott and

McCreary 2001) that projects onto the 30–70 day timescale. The SSTs used to force the Monthly ensemble

have far less intraseasonal variability, as little as one-sixth of the Daily-ensemble SST forcing in the waters

surrounding India (Figure 1b). The implications of removing this SST variability will be discussed further

in Section 3a.

Within each ensemble, initial conditions were obtained from a previous AMIP II integration of HadAM3

at N144L30 using climatological SSTs. Members were initialized from consecutive days in February from

the AMIP II integration, with the validity date of each member’s initial conditions being set to 1 February.

All members were then integrated for the year correspondingto the available OSTIA SSTs: 1 February 2005

through 31 January 2006. As the monsoon season begins in June, initializing the simulations in February

provides ample spin-up time to allow the model to adjust to the OSTIA SST forcing and for the individual

members to diverge.

d. Calculation of ensemble-mean quantities

Where ensemble-mean metrics are used, they have been calculated by first performing the metric on each

ensemble member and then taking the mean of the metric acrossthe ensemble. For example, to calculate the

ensemble-mean standard deviation of 30–70 day bandpass-filtered JJAS rainfall, we first took the standard

deviation of 30–70 day bandpass-filtered JJAS rainfall fromeach member and then computed the mean of

that variance across the ensemble.

3. Impacts of high-frequency SSTs

a. Ensemble-mean diagnostics

When forced by daily OSTIA SSTs, HadAM3 reproduced well the JJAS-mean rainfall across the mon-

soon domain, with local maxima in the northern Bay of Bay of Bengal, along the hilly western coast of India,
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and in the Indian Ocean south of the equator (Figure 2a). The model’s spatial distribution of rainfall across

India resembled to a high degree the 1°x 1°gridded 1951–2004climatology of JJAS rainfall compiled by the

Indian Meteorological Department (Figure 2b; Rajeevan et al. 2005). The model underestimated the rainfall

near the southwest tip of India; produced a weaker rain-shadow effect from the western mountains, resulting

in wet biases over central southern India; and overestimated rainfall in the northeastern and northern regions

of the subcontinent.

The difference between the Daily and Monthly ensembles gives the impact of including submonthly

SST variability in the forcing dataset. Submonthly SST variability caused small but statistically significant

changes in ensemble-mean, JJAS-mean precipitation. The Daily ensemble showed higher seasonal-mean

rainfall over the northern Bay of Bengal and the Arabian Sea and less rainfall to the south of the peninsula

(Figure 2c). These differences occurred even though the SSTforcing for both ensembles had the same

monthly—and hence seasonal—mean at each gridpoint. Furthermore, the differences were negative as well

as positive, which suggests that they were likely not causedby the non-linear response of precipitation to

SSTs (i.e., through the Clausius-Clapeyron relationship), but may be associated with circulation changes.

While the statistical significance of the changes to the ensemble-mean, JJAS-mean rainfall is a notewor-

thy result, the low magnitude of these changes implies that including submonthly SST variability did not

substantially alter the model climatology from the Monthlyensemble.

An increase in the monsoon intraseasonal variability in theDaily ensemble was immediately detectable

when precipitation was filtered to intraseasonal timescales (30–70 days; Figure 2d). These increases are

mostly confined to the ocean, although some more-scattered significant values can be seen across northwest-

ern and central India. The increased intraseasonal variability across the eastern Indian Ocean and northwards

into the Bay of Bengal are particularly encouraging for the NPISO, as past studies have indicated that the

oscillation was more clearly observable in the eastern basin (Lawrence and Webster 2002; Klingaman et al.

2007).

When area-averaged precipitation over the Indian landmasswas examined, substantial differences were

obtained between the ensemble means across the subcontinent (Figure 3; the red lines are the ensemble
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means). Both ensembles reasonably simulated the evolutionof the daily climatology from the all-India

rainfall dataset provided by the Indian Institute for Tropical Meteorology, although with a persistent wet

bias of several millimeters per day. On qualitative inspection, however, the Daily ensemble-mean displayed

clear intraseasonal variability, particularly after July1 (Figure 3a). One active-break-active cycle began

with an active event in late July, followed by break conditions during most of August and then a return to

active conditions in early September. Most of the individual ensemble members (black lines) mimicked the

ensemble mean through this oscillation. However, no ensemble member reliably simulated the observed

all-India rainfall for 2005 (green line), the same year as the SST forcing. That season was characterized by a

MJO-like equatorial convection in May and a delayed onset ofmonsoon rains across India; during June the

observed rainfall lay outside the range of both ensembles. This suggests that the conditions influencing the

delayed onset either had no significant impact on the SSTs—and so are not present in the OSTIA analyses–or

cannot be driven in this model from forced SSTs.

Further evidence for the ability of submonthly SSTs to affect intraseasonal monsoon behavior came from

the ensemble-mean wavelet transform of precipitation in the northern Bay of Bengal, the region that showed

one of the largest increases in 30–70 bandpass-filtered precipitation in the Daily ensemble (Figure 2b). The

wavelet analysis from the Daily ensemble confirmed that including daily SST variability induces additional

variance in intraseasonal rainfall, particularly at periods between 20 and 50 days (Figure 4a). This is the

characteristic period of the northward-propagating oscillation and so suggests that the oscillation might be

better-resolved in the Daily ensemble. In this band, the Daily ensemble had power exceeding the 95%

confidence level (against a background red-noise spectrum)beginning in late July, with power exceeding

90% confidence extending back to early July. In striking contrast, the Monthly ensemble had no power

at intraseasonal periods exceeding any reasonable confidence level at any time during the monsoon season

(Figure 4b). We qualitatively examined the wavelet transforms from each ensemble member (not shown) and

found that the majority of the Daily-ensemble members contained significant power above 90% confidence

in the 20–50 day band during the season, while the majority ofthe Monthly-ensemble members did not.

The limited temporal extent of the statistically significant power at periods shorter than 10 days suggests
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that this power is probably associated with sharp changes inthe seasonal cycle of precipitation rather than

with persistent variability. Comparing the dates of this high-frequency power with the timeseries of all-India

precipitation (Figure 3) supports this hypothesis, as the ensemble-mean precipitation decreased rapidly in

late July and increased again in early September. These changes projected onto short-frequency wavelets

and appeared in the wavelet analysis as statistically significant power.

The wavelet transforms of the forcing SSTs in the Bay of Bengal indicate that the Daily SST forcing

contained statistically significant power in the 30–50 day band during late July, August, and September

(Figure 4c), a period which broadly corresponds to the occurrence of power in precipitation at the 95%

confidence level in Figure 4a. In taking the monthly means of these SSTs, we have removed all power

at periods shorter than 30 days and damped variability down to at least 60-day periods (Figure 4d). The

association between the intraseasonal variance in SSTs andrainfall demonstrates the potential for a strong

link between SSTs and precipitation in this region.

To explore the quantitative difference in intraseasonal activity across all ensemble members, we have

constructed a metric that considers the power on those timescales. For each member, we took the area-

averaged precipitation for each day in the same region used to construct Figure 4 and performed a one-

dimensional wavelet transform on the resulting timeseries. Since we were most interested in the intrasea-

sonal periods where the Daily ensemble showed statistically significant power, we considered only periods

between 30 and 50 days; periods between 20 and 30 days were notconsidered so as to clearly separate the

30–50 day NPISO from 10–20 day variability along the monsoontrough (Annamalai and Slingo 2001). We

normalized the power at each period in the 30–50 day range by the 90% confidence level for that particu-

lar period.1 The normalization ensured that longer periods—which have greater power, but also a greater

confidence threshold from the red-noise spectrum—do not carry greater weight than shorter periods. All

values greater than unity (i.e., for which the power exceeded 90% confidence) were summed across JJAS.

Therefore, this “intraseasonal-power metric” provides a measure of both the frequency of occurrence and

1Performing this same analysis with the 95% confidence limit generated similar results to those described below, but withlower

values for all ensemble members since fewer points have power exceeding 95% confidence.
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the intensity of power in the 30–50 day band in each ensemble member.

We calculated the intraseasonal-power metric on each member in both ensembles and for the 1997–

2006 1°x1° gridded, daily precipitation analyses from the Global Precipitation Climatology Project (GPCP).

The high spatial and temporal resolutions of the GPCP data nearly match the resolutions of the HadAM3

simulations. The probability density function (PDF) of theintraseasonal-power metric values confirms that

the vast majority of members in the Daily ensemble had greater 30–50 day power in precipitation than their

counterparts in the Monthly ensemble (Figure 5). By this metric, most of the members in the Monthly

ensemble had very little statistically significant intraseasonal power in Bay of Bengal rainfall compared to

the GPCP analysis. On the other hand, the PDF of the Daily ensemble approximated the GPCP PDF well.

If one were to choose an ensemble member at random from each ensemble, the Daily ensemble member

would be about twice as likely to have intraseasonal variability close to the GPCP analysis from 2005, the

same year as the OSTIA SSTs used to force the HadAM3 simulations.

An increase in significant power at intraseasonal frequencies is a necessary, but not a sufficient condition

for an improved NPISO in the Daily ensemble. While the increase in power from introducing submonthly

SSTs is a noteworthy result in itself, individual intraseasonal events must display coherent northward prop-

agation if we are to conclude that the additional intraseasonal SST forcing improved the NPISO in these

atmosphere-only simulations. To assess the spatial coherence of the increase in intraseasonal variability, we

performed wavelet transforms similar to those in Figure 4 for each ensemble member at every gridpoint in

the monsoon domain. From these wavelet transforms, we calculated the decimal fraction of times during

JJAS that the power in precipitation at each period in the 30–50 day band exceeded the 90% confidence level.

This is similar to the intraseasonal-power metric, but herewe are not concerned with the margin by which

the power exceeds 90% confidence, only that the power does exceed that level; it is essentially a measure of

the frequency of statistically significant intraseasonal power at each gridpoint. One would expect a strong,

coherent NPISO to appear as a solid band of higher values, allowing one trace the propagation of the NPISO

in the model. The result (not shown) mimicked the pattern of increased intraseasonal variability in the Daily

ensemble shown in Figure 2d. With few exceptions, values forthe Daily ensemble were higher than those
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for the Monthly ensemble across the monsoon domain, indicating that the increase in intraseasonal power

seen in Figure 4a was not confined to the northern Bay of Bengal. Statistically significant intraseasonal

power was therefore far more frequent in the Daily ensemble,particularly in the eastern third of the basin.

b. Model NPISO events compared with GPCP analysis

Having determined that the Daily ensemble contained greater intraseasonal variability and possibly a

stronger NPISO than the Monthly ensemble, we must now consider whether the modeled NPISO in the

Daily ensemble more-closely resembles the observed NPISO.First, it is important to note that providing

daily, observed SST forcing did not correct a common error inAGCM simulations of intraseasonal monsoon

variability: the phase relationship between SST anomaliesand atmospheric deep convection. We computed

the correlation between the linear trend in longitude-averaged (80–90°E) rainfall and SST over JJAS across

all ensemble members; the trend was calculated using a centered 11-day window at each day. We chose

this band because it contains little land south of 25°N; the NPISO is strongest in the eastern third of the

Indian Ocean; and both ensembles had some of their highest frequencies of occurrence of intraseasonal

power in this band. The linear trend in rainfall is a far more useful diagnostic than the raw rainfall timeseries

because of the strong latitudinal gradient in climatological precipitation between the equator and the Indian

subcontinent in JJAS. We elected to use the 11 day trend so as to obtain sufficient data points to calculate a

useful diagnostic, while limiting the mixing of intraseasonal modes. The “ensemble-mean” lag-correlation

coefficients were calculated by taking the mean of the lag covariances from the individual members, then

dividing by the product of the standard deviations of timeseries created by concatenating data from all 30

ensemble members. To account for the serial correlations inprecipitation within each ensemble member,

degrees of freedom were estimated using the method of Livezey and Chen (1983).

In the Daily ensemble and north of the equator, SSTs were most-strongly correlated with rainfall at

within a day or two of zero lag (Figure 6a), consistent with many previous AGCM studies (e.g., Fu and

Wang 2004; Rajendran and Kitoh 2006). The Monthly ensemble used daily SSTs from a linear interpolation
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between monthly means, and so correlating the trends in rainfall and SST produces no signal (Figure 6b).

Correlating the trends in GPCP rainfall and TMI SSTs over 1998-2006 demonstrates that, in analysis, SSTs

warmed most strongly 8–10 days before the maximum increase in rainfall, then cooled most strongly 8–10

days after (Figure 6c). This suggests a shorter timescale for atmosphere-ocean interactions than Fu and

Wang (2004), which used different observed datasets, a wider band for longitude averaging, and a 20–70

day bandpass filter.

Even without the correct phase relationship between SSTs and deep convection, an AGCM may still be

able to simulate an NPISO with reasonable intensity and propagation speed if the atmosphere responds to

warm SST anomalies by generating organized convection. If the SST anomalies have a realistic magnitude

and propagate northwards—as they do in observations of the NPISO (e.g., Klingaman et al. 2007)—they

may be able to induce the convection to follow. To diagnose this behavior in our ensembles, we used

the same linear trend in rainfall as in Figure 6. In the ensemble-mean rainfall trend, the Daily ensemble

had stronger and substantially more-coherent intraseasonal events than the Monthly ensemble (Figures 7a

and 7b). Active and break events in the Daily ensemble-mean trend propagated northwards from at least

10°N with a phase speed either consistent with or faster thanthe events in the GPCP analyses and previous

studies using observations. The Monthly ensemble-mean trend showed little or no northward propagation

and contained no events as strong as those in the Daily ensemble-mean.

It may be, however, that the intraseasonal variability of the Monthly ensemble-mean was dampened by

variability in the timing of intraseasonal events in the individual members. In other words, if each member

of the Monthly ensemble contained substantial active and break events but at different times during the

monsoon season, the ensemble-mean would falsely indicate that no active or break events occurred in the

Monthly ensemble. From the 30 members in each ensemble, we selected three members to examine more

closely, to determine if the individual simulations demonstrated the same behavior as the ensemble-mean.

We chose the three members from the ensemble that had values of the intraseasonal-power metric closest

to the most-probable value, determined from the PDF for thatensemble (i.e., the peak of the curves in

Figure 5). We refer to these as the “typical members” from each ensemble.
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The typical members confirmed that the Daily ensemble not only has greater intraseasonal rainfall vari-

ability but also a far greater organization to its convective events. The three Daily typical members (Fig-

ures 7c, 7e, and 7g) demonstrated consistent, northward-propagating increases and decreases in rainfall

throughout the monsoon season, while the Monthly typical members (Figures 7d, 7f, and 7h) had far less

coherence to their limited variability. The Daily members and ensemble mean produced intraseasonal events

at approximately the same times as the 2005 GPCP data (Figure7i)—beginning from the equator near 1 July

and 1 September—which suggests that these events are connected to the SSTs, since the 2005 OSTIA anal-

yses forced the simulations. The fact that the events were shifted earlier by 8–10 days in the simulations

supports this hypothesis, since this was the discrepancy between the model and observations in the phase

relationship between SSTs and rainfall (Figure 6). Thus thewarming trend in SSTs that has been observed

to precede an active event is coincident with an active eventin HadAM3, while the cooling SSTs that pre-

cede a break event in observations is coincident with a breakevent in the model; the model is half a cycle

out of phase with observations.

It is interesting to note the southward propagation from theequator that is occasionally seen in the

model simulations (particularly Figure 7g) and in the September event in the GPCP data. Several previ-

ous studies (e.g., Lawrence and Webster 2002) have suggested that equatorial convection could generate

equatorially symmetric Rossby cells, of which the Northern-Hemisphere cell would be amplified by the

northern-summer basic state. While the weaker Southern-Hemisphere cell was not consistently detectable

in either ensemble or the GPCP analysis, the equatorial symmetry seen in some events in Figure 7 implies

that such a mechanism might exist in those simulations.

To further examine the northward propagation of organized convective events in each ensemble, we

computed the lead-lag correlations of 30–50 day bandpass-filtered longitude-averaged (85–90°E) rainfall

during the monsoon season. Longitude-averaged rainfall ateach latitude point was correlated with the time-

series of longitude-averaged rainfall at 20°N. This northern latitude was chosen for the base point because

while some ensemble members have limited northward propagation, almost all members demonstrated some

30–50 day variability in precipitation in the northern Bay of Bengal. This can be seen in Figure 2d, where
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the increase in intraseasonal variability of precipitation was greater over the Bay of Bengal than over the

eastern equatorial Indian Ocean. Selecting a northerly latitude for the base point therefore provided the best

opportunity to detect any latitudinal propagation in the intraseasonal events.

The Daily ensemble-mean lead-lag correlation showed statistically significant (at the 5% level) north-

ward propagation from 5°N at a lead of about 20 days before theprecipitation reached 20°N (Figure 8a).

The opposite phase of the oscillation occurred 20–25 days later and displayed a similar northward track. By

contrast, the Monthly ensemble-mean showed no statistically significant, coherent northward propagation

for any event (Figure 8b). When the typical members from eachensemble were considered, the Daily typical

members demonstrated northward propagation from at least 10°N (Figures 8c, 8e, 8g), with two of the mem-

bers also showing southward propagation from the equator. These three members and the ensemble mean

all showed a propagation speed of about 1° day−1 from 10°N, in line with observations (Yasunari 1979;

Krishnamurti and Subrahmanyam 1982). Combined with the similar timing of intraseasonal events seen in

Figure 7, this behavior suggests that in some cases an atmosphere-only model can respond to high-frequency

sea-surface temperature forcing to produce an intraseasonal oscillation that resembles observations in inten-

sity, speed, and timing. On the other hand, the Monthly typical members exhibited no clear northward

propagation; they completely failed to produce any signal resembling an organized intraseasonal convective

event (Figures 8d, 8f, and 8h).

In the lag-correlations of daily typical members, the ensemble mean and in observations, the signal of an

intraseasonal oscillation was often found first in the north(i.e., over India) followed by the opposite phase

forming in the south (i.e., over the eastern equatorial Indian Ocean). This implies that intraseasonal monsoon

rainfall cannot be predicted solely from events propagating from the south; intraseasonal rainfall over India

displays the greatest predictability once either an activeor a break event has reached the subcontinent itself.

While the typical members from each ensemble represented the most-probable amounts of intraseasonal

variability one could obtain from that ensemble, the typical members from the Daily ensemble contained

substantially more of that variability than the typical members from the Monthly ensemble. Comparing

the typical members from each ensemble has shown that the Daily ensemble was far more likely to pro-
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duce organized, northward-propagating intraseasonal events, but it did not prove that the Monthly ensem-

ble was incapable of doing so as well. The Monthly ensemble did contain some members with values of

the intraseasonal-power metric that were equal to or higherthan many members from the Daily ensem-

ble (Figure 5), and these Monthly-ensemble members may wellshow an organized NPISO similar to their

Daily-ensemble counterparts.

To test this hypothesis, we compared the three members from each ensemble that had a value of the

intraseasonal-power metric that was closest to the value for the 2005 GPCP analysis (approximately 650);

these will be referred to as the “observational members.” This not only created a like-with-like comparison

between the two ensembles in terms of intraseasonal power, but also between the ensemble members and the

GPCP data. We repeated the diagnostics of the 11 day centeredlinear trend in rainfall (Figure 9) and the lead-

lag correlations of 30–50 day rainfall with a base point at 20°N (Figure 10). As before, the members from

the Daily ensemble displayed more-intense and more-coherent NPISO-like events than the corresponding

members from the Monthly ensembles. The trend in rainfall showed several strong events in the Daily

observational member in July and September with timing similar to the GPCP analyses (Figure 7g), as for

the typical members from the Daily ensemble. Intraseasonalevents in the Monthly ensemble member are

scattered at best and rarely extended south of 15°N. The lead-lag correlations also demonstrated that the

Daily ensemble members had more-frequent movement of convection from the equatorial Indian Ocean to

the subcontinent, while only one of the Monthly ensemble members showed any latitudinal propagation in

its intraseasonal variability (Figure 10b).

The results of Figures 9 and 10 are particularly remarkable since here we have compared members from

each ensemble that have similar amounts of intraseasonal variability. This indicates that even when the

Monthly ensemble members managed to generate substantial power in 30–50 day precipitation, the spatio-

temporal pattern of precipitation did not resemble the northward-propagating oscillation. The members

chosen had high values of the intraseasonal-power metric, higher than the values of the typical members

from either ensemble. While the Monthly ensemble could not generate NPISO-like events with even an

high (for that ensemble) amount of intraseasonal power, thetypical members from the Daily ensemble
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produced intense northward-propagating events that in some cases very closely resembled observations.

This speaks to the ability of high-frequency SSTs to not onlygenerate greater intraseasonal variability in

rainfall, but to organize convective events and encourage their northward propagation towards the Indian

landmass. High-frequency SST variations are thus a critical component of monsoon active-break cycles.

4. Discussion

Studies that have investigated the ability of atmosphere-only models to simulate the intraseasonal vari-

ability of the Indian monsoon have suggested, without exception, that AGCMs contain NPISO-like vari-

ability but cannot reproduce either the strength or propagation speed of the oscillation (e.g., Fu et al. 2003;

Waliser et al. 2003; Fu and Wang 2004; Rajendran and Kitoh 2006). Those studies that have also em-

ployed coupled models have found that air-sea coupling improved representations of the NPISO. The first

result led to the conclusion that the NPISO is an internal atmospheric mode, while the second implied that

atmosphere-ocean feedbacks were essential to generate a strong NPISO with the appropriate meridional ve-

locity. Our results support this hypothesis, as some of the Monthly ensemble members contain intraseasonal

variability that agrees with GPCP analyses (Figure 5 and Figure 7j). These studies considered the key fail-

ing of AGCMs to be their inability to represent the near-quadrature phase relationship between sea-surface

temperatures and convection. We noted in Section 1c, however, that all previous studies to simulate the

NPISO with an AGCM have employed SST forcing that substantially underestimates the intraseasonal SST

anomalies associated with individual active and break events.

Here, we have demonstrated that an AGCM can reproduce NPISO-like variability with greater fidelity

if forced by SSTs with more-realistic intraseasonal variability (ISV), even though the phase relationship

between rainfall and SST remains incorrect (Figure 6). In reality, the high-frequency SST variability in

the monsoon region is undoubtedly a response to the high-frequency atmospheric forcing. The caveat in

our simulations, then, is that incorrect physical responses may occur if the atmosphere is substantially “out

of sync” with the SST forcing. In other words, the atmosphereis not a forced system and so individual
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ensemble members may show widely varying responses given the same SST forcing, some of which may not

be realistic. This is likely why some of the members of the Daily ensemble showed little or no intraseasonal

variability (Figure 5).

It is reasonable to conclude, therefore, that is not necessarily the zero-lag phase relationship between the

SSTs and convection that resulted in weak NPISO-like variability in past AGCM experiments, but the low

magnitude of daily, submonthly, and intraseasonal SST variability in the forcing SSTs. For instance, using

coupled-model SSTs, Fu and Wang (2004) found little improvement between AGCM experiments with

monthly mean and daily SST forcing. Combined with the results in this study, this suggests that not only are

the frequency of the SST anomalies critical for an accurate simulation of the NPISO, but also the magnitude

of the SST anomalies on submonthly timescales. It could be argued that without atmosphere-to-ocean

feedbacks our modeled NPISO events may not have been driven by entirely correct physical mechanisms,

but their very existence speaks to the ability of an AGCM to respond to spatially coherent and accurate

intraseasonal SST anomalies with organized intraseasonalconvection.

The results of this study have clear implications for futureACGM and coupled-model experiments.

Simulations which remove or under-represent high-frequency SST anomalies severely limit the ability of

the model to reproduce an NPISO that resembles observationsin frequency, intensity, and propagation

speed. This is equally true for coupled models with dynamic SSTs as for atmosphere-only simulations. As

previously mentioned in Section 1c, many coupled models substantially underestimate SST variability due

to excessively high thermal inertia, a function of coarse vertical resolution in the upper ocean. Our results

indicate that this vertical resolution must be improved if representations—and hence predictability—of the

NPISO are to be improved, as has also been demonstrated by Bernie et al. (2007) for the MJO. Similarly,

atmosphere-only simulations which continue to use monthlymean SST forcing are imposing an unnecessary

constraint on the ability of the model to generate organizedconvection in response to high-frequency SST

anomalies.

Further, our experiments suggest that including high-frequency, realistic SST anomalies are necessary

for capturing the initiation and northward propagation of NPISO events in an AGCM. Thus, the predictabil-
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ity of active and break events in such a model must be in part a function of the accuracy of these anomalies.

Fu et al. (2007) recently showed an increase in the NPISO predictability timescale of nearly one week in

a coupled model over an AGCM. Many short- and medium-range weather prediction models, however, are

AGCMs with persistent SST anomalies. Without either an interactive ocean or a technique for adding high-

frequency SST perturbations, these models will likely failto predict the frequency and intensity of NPISO

events. In this case, an interactive ocean need not be more than a mixed-layer scheme (e.g., Woolnough et al.

2007), as the response of the Indian Ocean on intraseasonal timescales is likely to be dominated by thermo-

dynamic processes. Future work will examine the impact of adding a mixed-layer scheme to an AGCM on

NPISO predictability.

5. Summary and Conclusions

Our ensembles of HadAM3 simulations forced with OSTIA SSTs demonstrated that an AGCM could

respond to accurate, high-frequency SST forcing to organize convection and generate NPISO-like variabil-

ity. We noted in Section 3a that the members of the Daily ensemble contained substantially more power

in 30–50 day precipitation than the members from the Monthlyensemble. Figure 5 demonstrated this con-

clusively; it also showed that the Daily ensemble matches the GPCP analysis remarkably well. Not all

members of the Daily ensemble contained appropriate amounts of intraseasonal power, but the inclusion of

realistic, daily SST anomalies allowed more ensemble members to contain this power than in the Monthly

ensemble. The key result here, then, is that while HadAM3 didnot always respond to daily SST forcing by

organizing NPISO-like variability in convection, the daily SST forcing significantly improved the chances

that an individual ensemble member would produce such variability (over monthly mean SST forcing).

Not only did the members of the Daily ensemble reproduce accurate intraseasonal precipitation vari-

ability twice as frequently than the Monthly-ensemble members, but those that showed an organization and

propagation to the convection that resembled the NPISO in the GPCP analyses. Even when an integration

forced with monthly mean SSTs produced substantial intraseasonal variability in precipitation, this was not
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organized into a coherent, northward-propagating NPISO event. Taken together, these results and those

from the previous paragraph indicate that daily SST forcingcan induce an atmosphere-only model to pro-

duce accurate amounts of 30–50 day power in precipitation far more frequently than monthly mean SST

forcing, and to organize that variability into coherent convective events that move northwards with a phase

speed that agrees with the NPISO.

Even with accurate, daily SST forcing, our AGCM still collocated the rainfall too readily over the

warmest sea-surface temperatures (Figure 6). This is in direct contrast with observations, which have con-

sistently shown that the strongest convection is associated with cooling SSTs; warm SSTs are associated

with NPISO break events and suppressed convection (e.g., Fuand Wang 2004; Klingaman et al. 2007). The

incorrect phase relationship is likely due to the lack of feedbacks between convection and the ocean surface,

which is an intrinsic failure of atmosphere-only models when simulating tropical intraseasonal variability

and which cannot be resolved by improving the SST forcing. Itis also possible that this failure is due to the

HadAM3 convection scheme responding too readily to the warmSSTs. Our results indicate that a coupled

model must be able to accurately represent the high-frequency SST anomalies that are so critical to the

intraseasonal variability of convection and precipitation. High-frequency SSTs play a key role in strength-

ening and maintaining the NPISO and so cannot be neglected, regardless of whether they are being forced

in a atmosphere-only model or simulated in a coupled one.
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a.

b.

Figure 1: (a) The standard deviation in the June–September (JJAS) 30–70 day bandpass-filtered OSTIA

sea-surface temperatures (°C) used to force the Daily ensemble, and (b) the ratio of the standard deviation

shown in (a) between the forced SSTs for the two ensembles, taken as the Daily-ensemble SSTs divided

by the Monthly-ensemble SSTs. In (a) black line contours show the percentage of the total variability for

which the 30–70 day band accounts, with contours at 25%, 50%,and 75%.
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a. b.

c. d.

Figure 2: (a) The ensemble-mean JJAS-mean precipitation rate (mm day−1) from the Daily ensemble; (b)

the climatological JJAS-mean precipitation rate (mm day−1) from the IMD gridded rainfall data; (c) the dif-

ference in (a) between the Daily and Monthly ensemble, takenas the Daily minus the Monthly ensemble; (d)

the ratio of the ensemble-mean standard deviation of 30–70 day bandpass-filtered JJAS precipitation, taken

as the Daily ensemble divided by the Monthly ensemble. Grey (black) dots indicate statistical significance

at the 5% (10%) level using an (c) two-tailed Student’st-test and (d) a two-tailed F-test.
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a. b.Daily ensemble Monthly ensemble

Figure 3: The area-averaged precipitation rate (mm day−1) taken over all Indian land points (10–30°N, 70–

90°E) for (a) the Daily ensemble and (b) the Monthly ensemblefor (black) the individual ensemble members

and (red) the ensemble-mean. The yellow line gives the dailyclimatology from the all-India rainfall dataset

(1901–2005); the green line gives the all-India rainfall for 2005.
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Figure 4: The ensemble-mean one-dimensional wavelet transform of (a,b) area-averaged precipitation

(mm day−1) and (c,d) area-averaged sea-surface temperatures in the northern Bay of Bengal (15°–20°N,

85°–90°E), for (left column) the Daily ensemble and (right column) the Monthly ensemble. The solid black

contours indicate the 90% and 95% confidence intervals against red noise, while the dashed black contour

indicates the region outside of which edge effects distort the results.
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Figure 5: Probability density function of the intraseasonal-power metric for (solid line) the Daily ensemble,

(long dash) the Monthly ensemble, and (dash-dot) the 1997–2006 1°x1°gridded, daily precipitation analyses

from GPCP. The value of this metric for 2005—the year of the SST forcing—is shown as a vertical, short-

dashed line.
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a. Daily ensemble

Monthly ensembleb.

GPCP/TMIc.

Figure 6: Lag correlations between the linear trend (11-daywindow) in longitude-averaged (80–90°E) rain-

fall and SST over JJAS for (a) the Daily ensemble, (b) the Monthly ensemble, and (c) GPCP rainfall and

TMI SSTs from 1998–2006. Grey shading indicates statistical significance at the 5% level.

37



a.

c.

e.

g.

d.

f.

h.

i.

b.
Daily ensemble Monthly ensemble

GPCP

E
n
se

m
b
le

 m
ea

n
T

y
p
ic

al
 m

em
b
er

s

Figure 7: The linear trend (11-day window) in longitude-averaged rainfall (85–90°E; mm day−2) for (a) the

Daily ensemble mean, (b) the Monthly ensemble mean, (c–h) three members from the (left column) Daily

ensemble and (right column) Monthly column with values of the intraseasonal-power metric closest to the

most-probable value for the respective ensemble, and (i) the GPCP analysis for 2005. Note that (a) and (b)

have smaller contour intervals than the other panels.
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Figure 8: As in Figure 7, but for lead-lag correlations of 30–50 day bandpass-filtered longitude-averaged

rainfall (85–90°E), with the base point at 20°N. Contours are drawn every 0.2, with negative contours dashed

and the zero contour line omitted. Grey shading indicates statistical significance at the 5% level.
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Figure 9: As in Figure 7, but for the three members from (left column) the Daily ensemble and (right

column) the Monthly ensemble with the value of the intraseasonal-power metric closest to the value for the

2005 GPCP analysis.
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Figure 10: As in Figure 8, but for the “observational members” shown in Figure 9.
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