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ABSTRACT

While the Indian monsoon exhibits substantial variabitityinterannual timescales, its in-
traseasonal variability is of greater magnitude and hehcatiwal importance for predictability
of monsoon rains. This intraseasonal variability comprs&0-50 day northward-propagating
oscillation (NPISO) between active and break events of medth and reduced rainfall, re-
spectively, over the subcontinent. Several recent stuties implied that coupled general
circulation models (CGCMs) were better able to simulateNIR#SO than their atmosphere-
only counterparts (AGCMs). These studies have forced BhG&ICM simulations with SSTs
from coupled integrations or observations from infrarestiniments onboard satellites, both of
which substantially underestimate intraseasonal SSahidity in the tropical oceans.

We have forced the 1.2%0.83 Hadley Centre Atmospheric Model (HadAMS3) with a high-
frequency, observed SST dataset from the U.K. Met Office gittater intraseasonal vari-
ance in the Indian Ocean than previous products. One eneashbimulations was forced by
daily observed SSTs and a second with monthly means. Whepareah, the ensemble with
daily SSTs displayed significantly greater variability B+-30 day precipitation across the mon-
soon domain, variability much more in-line with observatio Individual ensemble members
contained intraseasonal events with strength, propagapeed, and organization that closely
matched events from a global analysis of precipitation.rBvaen members from the ensem-
ble with monthly mean SSTs displayed power in intraseasiiafall, the events themselves
were weak, disorganized, and failed to move northwards fiteenequator. We conclude that
high-frequency SST anomalies not only increased variamggraseasonal rainfall, but helped
to organize and maintain the coherent convective eventdmaprise the NPISO. Further, our
results indicate that an atmosphere-only model can resmoaccurate and frequent SST forc-
ing to realistic generate intraseasonal variability. Bhessults have important implications for
simulating the NPISO in atmosphere-only and coupled cknmabdels, as well as predicting

tropical intraseasonal variability in short- and mediusnge weather forecasts.



1. Introduction

a. The northward-propagating intraseasonal oscillation

While the Indian summer monsoon remains one of the most sl@msiand stable features of the global
climate system on interannual and interdecadal timesddlesnonsoon’s intraseasonal variability (ISV) is
far less predictable. Intraseasonal oscillations in thasoon’s strength are dominated by organized convec-
tive events that form in the equatorial Indian Ocean (EqiQ) propagate north to the Indian subcontinent
(e.g., Annamalai et al. 1999; Annamalai and Slingo 2001)s fmbrthward-propagating intraseasonal oscil-
lation (NPISO) has a period of 30-50 days and a speed of aippately 1° latitude day' (e.g., Yasunari
1979; Krishnamurti and Subrahmanyam 1982; Gadgil 1990;reaee and Webster 2002). Convection over
India is to some extent anti-correlated with the easterrOHEEQIO), such that “active” periods of en-
hanced rainfall over the subcontinent are associated witbak” periods of suppressed convection in the
EEQIO (Hartmann et al. 1992; Annamalai and Sperber 2005)is@vaet al. (1999a) demonstrated that these
recurring active and break events give the monsoon an ISatgréhan its interannual variability. Success-
ful long-range prediction of these events would be a greahlto Indian agriculture, primarily for flood and
drought mitigation (Webster and Hoyos 2004).

Recent studies have made some progress towards undemgtahdiphysical mechanisms underlying
the NPISO and its propagation, although competing hypethpsrsist. Using observations and simple nu-
merical experiments, Wang and Xie (1997) suggested thatdhteward propagation was an artifact of an
eastward-moving Kelvin-Rossby wave packet that tiltedhmeest-ward with latitude. Similar efforts have
examined reanalysis data and described the meridionahgatipn as Rossby waves emanating from equa-
torial convection, although disagreements exist over kdrethe equatorial convection must first propagate
eastward from the western Indian Ocean (Wang and Rui 1998awalai and Slingo 2001; Kemball-Cook
and Wang 2001; Lawrence and Webster 2002). If such promagaticurred frequently, it would imply a

connection between the NPISO and the Madden-Julian Qsmill@MJO; Madden and Julian 1971, 1972).



Following Madden (1986) and Hendon and Salby (1994), Warda. ¢2005) found that the MJO was too
weak and irregular during the monsoon season to sustain Bi8@ instead proposing a self-induction
mechanism for the NPISO. While the MJO may coexist and iotesgth the NPISO, it is unclear whether

the MJO forces NPISO events.

b. The effect of air-sea coupling on NPI1SO simulations

Atmosphere-ocean coupled processes have recently gaippdrs as potential mechanisms for driv-
ing the NPISO. Waliser et al. (2003) concluded that all tencesphere-only GCMs (AGCMs) from the
Climate Variability and Predictability program / Asian-gtualian monsoon intercomparison project (Kang
et al. 2002) substantially underestimated the monsoon p8iicularly near the equatorial Indian Ocean,
despite displaying reasonable seasonal-mean rainfalleaklier intercomparison study found that many
AGCMs exhibited poor MJO-like variability in northern want (Slingo et al. 1996). Similar studies with
individual AGCMs have confirmed this deficiency (e.g., Rdjam et al. 2002). Still, the fact that AGCMs
generated intraseasonal events, albeit weak, suggestheldPISO is an intrinsically atmospheric mode;
the oscillation likely arises from internal atmosphericiahility, not coupled processes.

Following many studies that showed air-sea coupling imgdosimulations of the MJO (e.qg., Flatau
et al. 1997; Waliser et al. 1999b; Kemball-Cook et al. 200f1eks and Slingo 2003; Woolnough et al.
2007), recent efforts have focused on the impact of an icti@eaocean on the NPISO. These studies are
justified by observations of Indian Ocean sea-surface testyres (SSTs) from the Bay of Bengal Monsoon
Experiment (Bhat et al. 2001) and Joint Air-Sea Monsoorréaion Experiment (Webster et al. 2002) field
campaigns, which showed the passage of NPISO events to beiaes with substantial SST variations.
As in the MJO (Woolnough et al. 2000), anomalous SSTs arebphase with anomalous convection,
with warm (cool) SSTs leading enhanced (suppressed) ctiomdzy 10-15 days. Anomalies in SST and
convection are linked by a negative feedback involving azefheat fluxes, boundary-layer stability, low-

level winds, evaporation, and moisture convergence (Kamball-Cook and Wang 2001; Klingaman et al.



2007).

Fu et al. (2003) compared a hybrid coupled GCM to its atmaspbely counterpart and found the cou-
pled model produced a strong NPISO with correct phase oeksttips (compared to observations) between
SSTs, convection, and surface heat fluxes. The AGCM prodacedaker NPISO and collocated intense
convection with the warmest SSTs, whereas in observatiasVv6STs coincide with subsidence, clear
skies, and strong insolation (Fu et al. 2002). This errooimmon in AGCM simulations of intraseasonal
behavior in the Indian Ocean and in the west Pacific warm pbiding the same model, Fu and Wang
(2004) demonstrated that coupling substantially imprayedtwo- and three-dimensional structure of the
NPISO over an AGCM integration when validated against als&ms and European Centre for Medium-
range Weather Forecasts (ECMWF) analyses. The authorsudedcthat AGCMs had little hope of ever
representing observed monsoon ISV due to their fundamarahllity to create and modify the requisite
intraseasonal SST anomalies through convective feedbacks

Rajendran and Kitoh (2006) obtained similar results with Mheteorological Research Institute (MRI)
GCM. They found that large-scale atmospheric dynamicsdcaatount for the existence of the MJO and
the NPISO, but that atmosphere-to-ocean feedbacks andpifeeintensity and corrected the phase speed
of propagating convection. The MRI coupled GCM reasonabplicated observed phase relationships be-
tween rainfall, SST, net surface heat flux, latent heat flog,urface wind stress, while phase relationships
in the AGCM were weaker and temporally distorted. This agreith Zheng et al. (2004), who employed
the coupled model from the Geophysical Fluid Dynamics Latmoy. Fu et al. (2007) demonstrated that
a coupled GCM could extend NPISO predictability—as meabkiethe ratio of signal to forecast-error
and by the spatial correlation of anomalies in time-filtergidfall—by about a week when compared to the
same model without an interactive ocean.

Air-sea coupling does not rectify all errors associatechulie NPISO. As for the MJO, errors in the
mean-state can influence simulations of the NPISO. Inneak €003) showed that reducing systematic
errors in the mean state of the Hadley Centre coupled model@I3) could substantially improve sim-

ulations of the MJO. Sperber (2004) also suggested that steéanerrors could project onto intraseasonal
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behavior and so degrade simulations of phenomena such Ekltbeand the NPISO. Further, Fu and Wang
(2004) noted that model representations of cumulus clantisactions between clouds and incident and re-
flected radiation, boundary-layer processes, and larfdesifeedbacks could dramatically affect simulated

intraseasonal variability.

c. Motivation

Although many studies have found a weak and inconsistenS8Rh AGCMs, the SST forcing pro-
vided to the AGCMs in these studies often has exhibited nibdkdiciencies. Typically, AGCM simulations
have been forced by SSTs from the coupled-model integsatigainst which the AGCM is to be compared.
Fu and Wang (2004), for example, forced their AGCM with thimaltological mean SST from their 10 year
coupled simulation. Where observed SSTs have been usedWliser et al. 2003), they have been taken
from the weekly SST analyses produced by the National CeriterEnvironmental Prediction (NCEP;
Reynolds and Smith 1994). When compared to observatiork,doupled-model and NCEP SSTs suffer
from weak intraseasonal anomalies (Harrison and Vecchi 288nan et al. 2001; Sengupta and Ravichan-
dran 2001; Sengupta et al. 2001).

In a study focused on the west Pacific, Bernie et al. (2005)pesed a one-dimensional ocean mixed-
layer model to observations from the Intensive Observaiemod of the Tropical Ocean Global Atmosphere
Coupled Ocean-Atmosphere Response Experiment. Theyun@ttithat to capture the intraseasonal SST
variability required an ocean model to be forced by diusnadirying heat fluxes and to have a low thermal
inertia in the mixed layer, equivalent to a fine vertical teson. As most coupled climate models used to
simulate the NPISO had a top ocean layer on the order of 10rsnibiiek and were coupled only once per
day, the intraseasonal SST anomalies that have been userté¢otfie corresponding AGCM experiments
were far too small; Bernie et al. (2005) suggested that acedntesolution of one meter and three-hourly
coupling are required to capture of order 90% of the obseinteaseasonal SST variability.

The large errors in these SST products have left unresohedrnderlying question of the ability of an



AGCM to simulate the NPISO given reasonably accurate, fighdency SST forcing. While it is ques-
tionable whether an AGCM would simulate the observed phals¢ionship between anomalous SSTs and
convection even with “perfect” SSTs, it may be that reali@SST anomalies could improve the poor ISV
in precipitation. Further, an observed SST dataset of fegiporal resolution would allow examination of
the effect of high-frequency (e.g., daily or weekly) SST rmaties on the NPISO. The tropical sea surface
evolves quickly and is tightly coupled to convection andhfall, so an assessment of the multi-scale inter-
actions of SST and rainfall would be valuable. This type giegiment is possible in an atmosphere-only
model, in which SSTs are prescribed and their temporal biitiacan be controlled. Sensitivity experi-
ments with high-frequency SSTs have been conducted usingemmodel SSTs (Fu and Wang 2004) and
the NCEP analysis (Liess and Bengtsson 2004), but giverstue$ noted above a new experiment with
observed SSTs with accurate intraseasonal variabilitgrigmly warranted.

In the absence of a full three-dimensional ocean model prowgredict intraseasonal SST variations
of the correct magnitude, we conduct two ensembles of siink with the Hadley Centre atmosphere
model (HadAM3) at high horizontal resolution. These endemhbre forced by a new SST dataset with fine
spatial and temporal resolution. Our primary interest @atermine the extent to which high-frequency SST
variability influences NPISO-like behavior. To that end, neeve forced one HadAM3 ensemble with daily
SSTs and the other with monthly means. By comparing simdiliifeISO events against observations, this
experimental design also allows an investigation of the M&EZJepresentation of the NPISO when forced
by some of the most-accurate SSTs available. The model artdvthensembles are described in Section 2;
we provide the results of our experiments and compare ithgialiensemble members to observations in
Section 3. We discuss the implications of our results caniogrhigh-frequency SSTs, particularly the

implications for coupled models and experiments, in Sectiand summarize our key findings in Section 5.



2. Model and methods

a. The Hadley Centre Atmospheric Model

All experiments in this study were performed with a higheteion version of the Hadley Centre At-
mospheric Model (HadAM3). The model is configured as descriln Pope et al. (2000), except that the
spatial, vertical, and temporal resolutions have beereaszd to 1.25° longitude by 0.83° latitude, 30 levels,
and 10 minutes, respectively; the spatial resolution iecflioee N144L30. Inness et al. (2001) demonstrated
that increasing the vertical resolution of HadAM3 from 1Bt levels was beneficial to the intraseasonal
variability of convection. Similarly, Liess and Bengtss@904) found that increasing the vertical resolu-
tion of the Hamburg atmospheric model (ECHAM4) from 19 to 8@els improved the phase speed of the
intraseasonal oscillation, and suggested that finer @trisolution would be particularly important at high
horizontal resolutions. Stratton (1999) studied the ¢iéthe N144L30 resolution on the previous version
of HadAM (HadAM2b) and concluded that the higher resolutimproved the model variability, bring-
ing the model closer to the ECMWF Reanalysis (ERA-40), whishs a similar spatial resolution. Some

systematic errors were also reduced, but many (e.qg., jtaedm) were found to be resolution-independent.

b. Sea-surface temperature forcing

This study is among the first to make use of SST analyses peddug the Global Ocean Data Assim-
ilation Experiment (GODAE) High-Resolution Sea-Surfaegrperature (GHRSST) project (Donlon et al.
2007). GHRSST provides an assimilation method that conshiimsitu measurements (e.g., buoys and
ships) with those from several microwave and infrared Bl including the Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI). This study uses th@@&ational Sea-surface Temperature and
sea-lce Analysis (OSTIA) product from the U.K. National @erfor Ocean Forecasting. The analysis is
available daily at 1/20° spatial resolution, or approxieiab km. (Data may be obtained from http://ghrsst-

pp.metoffice.com.) OSTIA is produced through a persistdrased optimal interpolation system (Lorenc



1981) using all data sources available to the GHRSST pr{panilon et al. 2007).

Due to the novelty of this product, SSTs were available fdy one year: February 2005-January 2006.
Preliminary comparisons against buoy data indicate tleaOBTIA analyses have a root-mean-square error
of 0.5°C and a cold bias of 0.15°C at a single point. The higttiapand temporal resolution of this dataset,
combined with its use ai-situ data and microwave satellites that can estimate SSTs thrdogds more
accurately than infrared instruments, make the OSTIA aealyffar more accurate than the SST datasets

frequently used to force atmosphere-only GCMs.

c. Experiment design

We conducted two 30 member ensembles of HadAMS3 forced by BEISSST analyses. The first
ensemble was forced by the daily OSTIA dataset and so inslbidgh-frequency SST variability; this will
be referred to as the “Daily ensemble.” The second ensemidmefavced by monthly-mean OSTIA SSTs
linearly interpolated to daily values and will be referredas the “Monthly ensemble.” The monthly-mean
SST forcing was calculated using the AMIP 1l method so that tionthly-mean SSTs in the Daily and
Monthly ensembles were equal at every grid point (TaylorleR@00). The OSTIA analyses were area-
averaged to the HadAM3 spatial resolution and the maskihgevimr sea-ice—used to estimate sea-ice
coverage—was altered appropriately to account for the@reeaging. SSTs and sea ice in both ensembles
were updated once per day.

The SSTs used to force the Daily ensemble have substantiabiliy in the 30—70 day intraseasonal
band during the monsoon season (June—September, “JJA¢Hter), particularly in the Bay of Bengal and
the Arabian Sea, where values approach 0.5°C (Figure laheleastern Bay of Bengal the 30-70 day
variability accounts for more than 50% of the total SST Jziliy. Variability on the equator is much
weaker, but Klingaman et al. (2007) found weak equatorial 88omalies associated with the northward-
propagating intraseasonal oscillation when using TMI S&lyses. The large values off the coast of Africa

are due to the spin-up of the Somali Jet at the beginning ofibilesoon season, which leads to substantial



coastal upwelling and widespread evaporative sea-sucfaaéng in June (Webster et al. 1998; Schott and
McCreary 2001) that projects onto the 30—70 day timescdie. ISTs used to force the Monthly ensemble
have far less intraseasonal variability, as little as drit®f the Daily-ensemble SST forcing in the waters
surrounding India (Figure 1b). The implications of remaythis SST variability will be discussed further
in Section 3a.

Within each ensemble, initial conditions were obtainedfioprevious AMIP Il integration of HadAM3
at N144L.30 using climatological SSTs. Members were in#&d from consecutive days in February from
the AMIP |l integration, with the validity date of each membeénitial conditions being set to 1 February.
All members were then integrated for the year corresponditige available OSTIA SSTs: 1 February 2005
through 31 January 2006. As the monsoon season begins iniditiadizing the simulations in February
provides ample spin-up time to allow the model to adjust @@ETIA SST forcing and for the individual

members to diverge.

d. Calculation of ensemble-mean quantities

Where ensemble-mean metrics are used, they have beeratadthy first performing the metric on each
ensemble member and then taking the mean of the metric abmegsemble. For example, to calculate the
ensemble-mean standard deviation of 30—-70 day bandptsedilJJAS rainfall, we first took the standard
deviation of 30-70 day bandpass-filtered JJAS rainfall feamoh member and then computed the mean of

that variance across the ensemble.

3. Impacts of high-frequency SSTs

a. Ensemble-mean diagnostics

When forced by daily OSTIA SSTs, HadAM3 reproduced well th&SF-mean rainfall across the mon-

soon domain, with local maxima in the northern Bay of Bay ofi@a, along the hilly western coast of India,



and in the Indian Ocean south of the equator (Figure 2a). Tdaetis spatial distribution of rainfall across
India resembled to a high degree the 1°x 1°gridded 1951-2®étology of JJAS rainfall compiled by the
Indian Meteorological Department (Figure 2b; Rajeevan.&G5). The model underestimated the rainfall
near the southwest tip of India; produced a weaker rainghadfect from the western mountains, resulting
in wet biases over central southern India; and overesthraiafall in the northeastern and northern regions
of the subcontinent.

The difference between the Daily and Monthly ensemblessgilie impact of including submonthly
SST variability in the forcing dataset. Submonthly SST adaitity caused small but statistically significant
changes in ensemble-mean, JJAS-mean precipitation. Tie @semble showed higher seasonal-mean
rainfall over the northern Bay of Bengal and the Arabian Sehlass rainfall to the south of the peninsula
(Figure 2c). These differences occurred even though the f88ing for both ensembles had the same
monthly—and hence seasonal—mean at each gridpoint. Fortine, the differences were negative as well
as positive, which suggests that they were likely not cadsetthe non-linear response of precipitation to
SSTs (i.e., through the Clausius-Clapeyron relationship) may be associated with circulation changes.
While the statistical significance of the changes to the rbt®mean, JJAS-mean rainfall is a notewor-
thy result, the low magnitude of these changes implies thEtuding submonthly SST variability did not
substantially alter the model climatology from the Montklysemble.

An increase in the monsoon intraseasonal variability inDh#y ensemble was immediately detectable
when precipitation was filtered to intraseasonal timescé®-70 days; Figure 2d). These increases are
mostly confined to the ocean, although some more-scattapaificant values can be seen across northwest-
ern and central India. The increased intraseasonal vhtyediiross the eastern Indian Ocean and northwards
into the Bay of Bengal are particularly encouraging for tHeISIO, as past studies have indicated that the
oscillation was more clearly observable in the eastermbasiwrence and Webster 2002; Klingaman et al.
2007).

When area-averaged precipitation over the Indian landmvassexamined, substantial differences were

obtained between the ensemble means across the subcortiigare 3; the red lines are the ensemble
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means). Both ensembles reasonably simulated the evolafitime daily climatology from the all-India
rainfall dataset provided by the Indian Institute for Ticgdi Meteorology, although with a persistent wet
bias of several millimeters per day. On qualitative insjpegthowever, the Daily ensemble-mean displayed
clear intraseasonal variability, particularly after Jaly(Figure 3a). One active-break-active cycle began
with an active event in late July, followed by break condialuring most of August and then a return to
active conditions in early September. Most of the individerassemble members (black lines) mimicked the
ensemble mean through this oscillation. However, no eneemember reliably simulated the observed
all-India rainfall for 2005 (green line), the same year a&s3I$T forcing. That season was characterized by a
MJO-like equatorial convection in May and a delayed onsehofhsoon rains across India; during June the
observed rainfall lay outside the range of both ensemblbis duggests that the conditions influencing the
delayed onset either had no significant impact on the SSTe-saare not present in the OSTIA analyses—or
cannot be driven in this model from forced SSTs.

Further evidence for the ability of submonthly SSTs to dffieitaseasonal monsoon behavior came from
the ensemble-mean wavelet transform of precipitationémttrthern Bay of Bengal, the region that showed
one of the largest increases in 30—70 bandpass-filteredbjtation in the Daily ensemble (Figure 2b). The
wavelet analysis from the Daily ensemble confirmed thauuticlg daily SST variability induces additional
variance in intraseasonal rainfall, particularly at pdsidoetween 20 and 50 days (Figure 4a). This is the
characteristic period of the northward-propagating &tiin and so suggests that the oscillation might be
better-resolved in the Daily ensemble. In this band, thdyDeiisemble had power exceeding the 95%
confidence level (against a background red-noise spectoegipning in late July, with power exceeding
90% confidence extending back to early July. In striking st the Monthly ensemble had no power
at intraseasonal periods exceeding any reasonable cordidimrel at any time during the monsoon season
(Figure 4b). We qualitatively examined the wavelet transfofrom each ensemble member (not shown) and
found that the majority of the Daily-ensemble members doethsignificant power above 90% confidence
in the 20-50 day band during the season, while the majorith@Monthly-ensemble members did not.

The limited temporal extent of the statistically significgmower at periods shorter than 10 days suggests
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that this power is probably associated with sharp chang#iseasonal cycle of precipitation rather than
with persistent variability. Comparing the dates of thigthfrequency power with the timeseries of all-India

precipitation (Figure 3) supports this hypothesis, as tteemble-mean precipitation decreased rapidly in
late July and increased again in early September. Thesgebagmojected onto short-frequency wavelets
and appeared in the wavelet analysis as statisticallyfgignt power.

The wavelet transforms of the forcing SSTs in the Bay of Béngdicate that the Daily SST forcing
contained statistically significant power in the 30-50 dapd during late July, August, and September
(Figure 4c), a period which broadly corresponds to the agetwwe of power in precipitation at the 95%
confidence level in Figure 4a. In taking the monthly meanshet¢ SSTs, we have removed all power
at periods shorter than 30 days and damped variability dovwat teast 60-day periods (Figure 4d). The
association between the intraseasonal variance in SSTiaanfdll demonstrates the potential for a strong
link between SSTs and precipitation in this region.

To explore the quantitative difference in intraseasonélif¢ across all ensemble members, we have
constructed a metric that considers the power on those dafess For each member, we took the area-
averaged precipitation for each day in the same region usedristruct Figure 4 and performed a one-
dimensional wavelet transform on the resulting timeseri&ace we were most interested in the intrasea-
sonal periods where the Daily ensemble showed statistisahificant power, we considered only periods
between 30 and 50 days; periods between 20 and 30 days werensidered so as to clearly separate the
30-50 day NPISO from 10-20 day variability along the monsmomgh (Annamalai and Slingo 2001). We
normalized the power at each period in the 30-50 day ranghéb9@% confidence level for that particu-
lar period! The normalization ensured that longer periods—which haeatgr power, but also a greater
confidence threshold from the red-noise spectrum—do noy cgieater weight than shorter periods. All
values greater than unity (i.e., for which the power excde@é®s confidence) were summed across JJAS.

Therefore, this “intraseasonal-power metric” provides easure of both the frequency of occurrence and

Performing this same analysis with the 95% confidence liemiiegated similar results to those described below, butlaikr

values for all ensemble members since fewer points havempexeeeding 95% confidence.
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the intensity of power in the 30-50 day band in each ensembiaber.

We calculated the intraseasonal-power metric on each meimbmth ensembles and for the 1997—
2006 1°x1° gridded, daily precipitation analyses from thet@l Precipitation Climatology Project (GPCP).
The high spatial and temporal resolutions of the GPCP dadynmatch the resolutions of the HadAM3
simulations. The probability density function (PDF) of theraseasonal-power metric values confirms that
the vast majority of members in the Daily ensemble had gr&ie50 day power in precipitation than their
counterparts in the Monthly ensemble (Figure 5). By thisribetnost of the members in the Monthly
ensemble had very little statistically significant intrasenal power in Bay of Bengal rainfall compared to
the GPCP analysis. On the other hand, the PDF of the Daily@seapproximated the GPCP PDF well.
If one were to choose an ensemble member at random from eaemble, the Daily ensemble member
would be about twice as likely to have intraseasonal vditglilose to the GPCP analysis from 2005, the
same year as the OSTIA SSTs used to force the HadAM3 simugatio

An increase in significant power at intraseasonal freq@arisia necessary, but not a sufficient condition
for an improved NPISO in the Daily ensemble. While the inseen power from introducing submonthly
SSTs is a noteworthy result in itself, individual intrasmaas events must display coherent northward prop-
agation if we are to conclude that the additional intraseals8ST forcing improved the NPISO in these
atmosphere-only simulations. To assess the spatial acoteed the increase in intraseasonal variability, we
performed wavelet transforms similar to those in Figurerdefich ensemble member at every gridpoint in
the monsoon domain. From these wavelet transforms, welatdcuthe decimal fraction of times during
JJAS that the power in precipitation at each period in thésB@ay band exceeded the 90% confidence level.
This is similar to the intraseasonal-power metric, but veeeare not concerned with the margin by which
the power exceeds 90% confidence, only that the power does@xicat level; it is essentially a measure of
the frequency of statistically significant intraseasor@ak@r at each gridpoint. One would expect a strong,
coherent NPISO to appear as a solid band of higher valuesyiali one trace the propagation of the NPISO
in the model. The result (not shown) mimicked the pattermoféased intraseasonal variability in the Daily

ensemble shown in Figure 2d. With few exceptions, valueshferDaily ensemble were higher than those
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for the Monthly ensemble across the monsoon domain, iridigéihat the increase in intraseasonal power
seen in Figure 4a was not confined to the northern Bay of Bengtltistically significant intraseasonal

power was therefore far more frequent in the Daily ensengalgjcularly in the eastern third of the basin.

b. Mode NPISO events compared with GPCP analysis

Having determined that the Daily ensemble contained gréatieseasonal variability and possibly a
stronger NPISO than the Monthly ensemble, we must now censithether the modeled NPISO in the
Daily ensemble more-closely resembles the observed NFF8§}, it is important to note that providing
daily, observed SST forcing did not correct a common errédfGCM simulations of intraseasonal monsoon
variability: the phase relationship between SST anomaliesatmospheric deep convection. We computed
the correlation between the linear trend in longitude-aged (80—-90°E) rainfall and SST over JJAS across
all ensemble members; the trend was calculated using arednté-day window at each day. We chose
this band because it contains little land south of 25°N; ti49D is strongest in the eastern third of the
Indian Ocean; and both ensembles had some of their higrespidncies of occurrence of intraseasonal
power in this band. The linear trend in rainfall is a far moseful diagnostic than the raw rainfall timeseries
because of the strong latitudinal gradient in climatolagjrecipitation between the equator and the Indian
subcontinent in JJAS. We elected to use the 11 day trend soddsain sufficient data points to calculate a
useful diagnostic, while limiting the mixing of intraseast modes. The “ensemble-mean” lag-correlation
coefficients were calculated by taking the mean of the lagudamces from the individual members, then
dividing by the product of the standard deviations of timesecreated by concatenating data from all 30
ensemble members. To account for the serial correlatiopseicipitation within each ensemble member,
degrees of freedom were estimated using the method of Lynexzg Chen (1983).

In the Daily ensemble and north of the equator, SSTs were-stastgly correlated with rainfall at
within a day or two of zero lag (Figure 6a), consistent withnmarevious AGCM studies (e.g., Fu and

Wang 2004; Rajendran and Kitoh 2006). The Monthly ensemd@el daily SSTs from a linear interpolation
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between monthly means, and so correlating the trends ifatlbamd SST produces no signal (Figure 6b).
Correlating the trends in GPCP rainfall and TMI SSTs over8t2006 demonstrates that, in analysis, SSTs
warmed most strongly 8—10 days before the maximum increasanfall, then cooled most strongly 8-10
days after (Figure 6¢). This suggests a shorter timescalatfosphere-ocean interactions than Fu and
Wang (2004), which used different observed datasets, arwigied for longitude averaging, and a 20-70
day bandpass filter.

Even without the correct phase relationship between SSd sl@ap convection, an AGCM may still be
able to simulate an NPISO with reasonable intensity andguation speed if the atmosphere responds to
warm SST anomalies by generating organized convectiohelSIST anomalies have a realistic magnitude
and propagate northwards—as they do in observations of FI&® (e.g., Klingaman et al. 2007)—they
may be able to induce the convection to follow. To diagnose behavior in our ensembles, we used
the same linear trend in rainfall as in Figure 6. In the endemtean rainfall trend, the Daily ensemble
had stronger and substantially more-coherent intrasehgseents than the Monthly ensemble (Figures 7a
and 7b). Active and break events in the Daily ensemble-mesard tpropagated northwards from at least
10°N with a phase speed either consistent with or fastertthaevents in the GPCP analyses and previous
studies using observations. The Monthly ensemble-mean showed little or no northward propagation
and contained no events as strong as those in the Daily efes@nelan.

It may be, however, that the intraseasonal variability efMonthly ensemble-mean was dampened by
variability in the timing of intraseasonal events in theiudual members. In other words, if each member
of the Monthly ensemble contained substantial active aeakevents but at different times during the
monsoon season, the ensemble-mean would falsely indltattend active or break events occurred in the
Monthly ensemble. From the 30 members in each ensemble, ladesk three members to examine more
closely, to determine if the individual simulations dentoated the same behavior as the ensemble-mean.
We chose the three members from the ensemble that had vdltles intraseasonal-power metric closest
to the most-probable value, determined from the PDF for émsemble (i.e., the peak of the curves in

Figure 5). We refer to these as the “typical members” fronheatsemble.
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The typical members confirmed that the Daily ensemble nat lba greater intraseasonal rainfall vari-
ability but also a far greater organization to its convertwents. The three Daily typical members (Fig-
ures 7c, 7e, and 7g) demonstrated consistent, northwaphgating increases and decreases in rainfall
throughout the monsoon season, while the Monthly typicahivers (Figures 7d, 7f, and 7h) had far less
coherence to their limited variability. The Daily membensl@&nsemble mean produced intraseasonal events
at approximately the same times as the 2005 GPCP data (Figurbeginning from the equator near 1 July
and 1 September—which suggests that these events are tasht@the SSTs, since the 2005 OSTIA anal-
yses forced the simulations. The fact that the events wéftedearlier by 8-10 days in the simulations
supports this hypothesis, since this was the discrepansyeka the model and observations in the phase
relationship between SSTs and rainfall (Figure 6). Thusstheming trend in SSTs that has been observed
to precede an active event is coincident with an active eneidHadAM3, while the cooling SSTs that pre-
cede a break event in observations is coincident with a begaht in the model; the model is half a cycle
out of phase with observations.

It is interesting to note the southward propagation fromdfaator that is occasionally seen in the
model simulations (particularly Figure 7g) and in the Seyiter event in the GPCP data. Several previ-
ous studies (e.g., Lawrence and Webster 2002) have sudgéstieequatorial convection could generate
equatorially symmetric Rossby cells, of which the NorthElemisphere cell would be amplified by the
northern-summer basic state. While the weaker Southemigfdere cell was not consistently detectable
in either ensemble or the GPCP analysis, the equatorial ®fnireeen in some events in Figure 7 implies
that such a mechanism might exist in those simulations.

To further examine the northward propagation of organizexlvective events in each ensemble, we
computed the lead-lag correlations of 30-50 day bandplesiefl longitude-averaged (85—90°E) rainfall
during the monsoon season. Longitude-averaged rainfefidt latitude point was correlated with the time-
series of longitude-averaged rainfall at 20°N. This nartHatitude was chosen for the base point because
while some ensemble members have limited northward proioagalmost all members demonstrated some

30-50 day variability in precipitation in the northern BayBengal. This can be seen in Figure 2d, where
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the increase in intraseasonal variability of precipitatigas greater over the Bay of Bengal than over the
eastern equatorial Indian Ocean. Selecting a northeitydiat for the base point therefore provided the best
opportunity to detect any latitudinal propagation in theedeeasonal events.

The Daily ensemble-mean lead-lag correlation showedsttatily significant (at the 5% level) north-
ward propagation from 5°N at a lead of about 20 days beforgtieipitation reached 20°N (Figure 8a).
The opposite phase of the oscillation occurred 20-25 dagsdad displayed a similar northward track. By
contrast, the Monthly ensemble-mean showed no statistis@nificant, coherent northward propagation
for any event (Figure 8b). When the typical members from escemble were considered, the Daily typical
members demonstrated northward propagation from at |8akst (Figures 8c, 8e, 8g), with two of the mem-
bers also showing southward propagation from the equatoesd three members and the ensemble mean
all showed a propagation speed of about 1°daffom 10°N, in line with observations (Yasunari 1979;
Krishnamurti and Subrahmanyam 1982). Combined with thdairtiming of intraseasonal events seen in
Figure 7, this behavior suggests that in some cases an dtarespnly model can respond to high-frequency
sea-surface temperature forcing to produce an intrasabgsdillation that resembles observations in inten-
sity, speed, and timing. On the other hand, the Monthly Bipinembers exhibited no clear northward
propagation; they completely failed to produce any sigesémbling an organized intraseasonal convective
event (Figures 8d, 8f, and 8h).

In the lag-correlations of daily typical members, the ensiermean and in observations, the signal of an
intraseasonal oscillation was often found first in the n¢icth, over India) followed by the opposite phase
forming in the south (i.e., over the eastern equatorialdnddcean). This implies that intraseasonal monsoon
rainfall cannot be predicted solely from events propaggfiiom the south; intraseasonal rainfall over India
displays the greatest predictability once either an adivebreak event has reached the subcontinent itself.

While the typical members from each ensemble represengaahtist-probable amounts of intraseasonal
variability one could obtain from that ensemble, the typim@mbers from the Daily ensemble contained
substantially more of that variability than the typical s from the Monthly ensemble. Comparing

the typical members from each ensemble has shown that the &aemble was far more likely to pro-
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duce organized, northward-propagating intraseasonait®viut it did not prove that the Monthly ensem-
ble was incapable of doing so as well. The Monthly ensemhtdecdntain some members with values of
the intraseasonal-power metric that were equal to or higfean many members from the Daily ensem-
ble (Figure 5), and these Monthly-ensemble members mayshiellv an organized NPISO similar to their
Daily-ensemble counterparts.

To test this hypothesis, we compared the three members femim ensemble that had a value of the
intraseasonal-power metric that was closest to the valuth&@2005 GPCP analysis (approximately 650);
these will be referred to as the “observational membersis bt only created a like-with-like comparison
between the two ensembles in terms of intraseasonal poutealdn between the ensemble members and the
GPCP data. We repeated the diagnostics of the 11 day celiteradtrend in rainfall (Figure 9) and the lead-
lag correlations of 30-50 day rainfall with a base point &N\2(Figure 10). As before, the members from
the Daily ensemble displayed more-intense and more-coh&lelSO-like events than the corresponding
members from the Monthly ensembles. The trend in rainfabwad several strong events in the Daily
observational member in July and September with timinglaimd the GPCP analyses (Figure 7g), as for
the typical members from the Daily ensemble. Intraseasewvehts in the Monthly ensemble member are
scattered at best and rarely extended south of 15°N. Theldgacbrrelations also demonstrated that the
Daily ensemble members had more-frequent movement of cbamefrom the equatorial Indian Ocean to
the subcontinent, while only one of the Monthly ensemble ipens showed any latitudinal propagation in
its intraseasonal variability (Figure 10b).

The results of Figures 9 and 10 are particularly remarkahtzhere we have compared members from
each ensemble that have similar amounts of intraseasoriabiidy. This indicates that even when the
Monthly ensemble members managed to generate substamtial jn 30-50 day precipitation, the spatio-
temporal pattern of precipitation did not resemble the mearrd-propagating oscillation. The members
chosen had high values of the intraseasonal-power metghehthan the values of the typical members
from either ensemble. While the Monthly ensemble could restegate NPISO-like events with even an

high (for that ensemble) amount of intraseasonal powertythieal members from the Daily ensemble
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produced intense northward-propagating events that iresceses very closely resembled observations.
This speaks to the ability of high-frequency SSTs to not @dperate greater intraseasonal variability in
rainfall, but to organize convective events and encourbge horthward propagation towards the Indian

landmass. High-frequency SST variations are thus a drié@maponent of monsoon active-break cycles.

4. Discussion

Studies that have investigated the ability of atmospheabhg-models to simulate the intraseasonal vari-
ability of the Indian monsoon have suggested, without etxaepthat AGCMs contain NPISO-like vari-
ability but cannot reproduce either the strength or propagapeed of the oscillation (e.g., Fu et al. 2003;
Waliser et al. 2003; Fu and Wang 2004; Rajendran and Kitol6200hose studies that have also em-
ployed coupled models have found that air-sea coupling orgat representations of the NPISO. The first
result led to the conclusion that the NPISO is an internabapheric mode, while the second implied that
atmosphere-ocean feedbacks were essential to generata@NPI1SO with the appropriate meridional ve-
locity. Our results support this hypothesis, as some of theatllly ensemble members contain intraseasonal
variability that agrees with GPCP analyses (Figure 5 andrEi@j). These studies considered the key fail-
ing of AGCM s to be their inability to represent the near-qadgre phase relationship between sea-surface
temperatures and convection. We noted in Section 1c, howthat all previous studies to simulate the
NPISO with an AGCM have employed SST forcing that substiytisnderestimates the intraseasonal SST
anomalies associated with individual active and breaktsven

Here, we have demonstrated that an AGCM can reproduce NR48®ariability with greater fidelity
if forced by SSTs with more-realistic intraseasonal valigb(ISV), even though the phase relationship
between rainfall and SST remains incorrect (Figure 6). hlitye the high-frequency SST variability in
the monsoon region is undoubtedly a response to the higjudrecy atmospheric forcing. The caveat in
our simulations, then, is that incorrect physical respsmsay occur if the atmosphere is substantially “out

of sync” with the SST forcing. In other words, the atmosphieraot a forced system and so individual
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ensemble members may show widely varying responses gieesathe SST forcing, some of which may not
be realistic. This is likely why some of the members of thelypahsemble showed little or no intraseasonal
variability (Figure 5).

Itis reasonable to conclude, therefore, that is not nedgstze zero-lag phase relationship between the
SSTs and convection that resulted in weak NPISO-like vditialn past AGCM experiments, but the low
magnitude of daily, submonthly, and intraseasonal SSEkdity in the forcing SSTs. For instance, using
coupled-model SSTs, Fu and Wang (2004) found little impmomet between AGCM experiments with
monthly mean and daily SST forcing. Combined with the rasalthis study, this suggests that not only are
the frequency of the SST anomalies critical for an accuiiatelation of the NPISO, but also the magnitude
of the SST anomalies on submonthly timescales. It could baear that without atmosphere-to-ocean
feedbacks our modeled NPISO events may not have been diventioely correct physical mechanisms,
but their very existence speaks to the ability of an AGCM tspmnd to spatially coherent and accurate
intraseasonal SST anomalies with organized intraseasongéction.

The results of this study have clear implications for futdd@GM and coupled-model experiments.
Simulations which remove or under-represent high-freque®ST anomalies severely limit the ability of
the model to reproduce an NPISO that resembles observatiofiequency, intensity, and propagation
speed. This is equally true for coupled models with dynan8d $as for atmosphere-only simulations. As
previously mentioned in Section 1c, many coupled modelstantially underestimate SST variability due
to excessively high thermal inertia, a function of coarseic@ resolution in the upper ocean. Our results
indicate that this vertical resolution must be improvedpnesentations—and hence predictability—of the
NPISO are to be improved, as has also been demonstrated bieBe¢mal. (2007) for the MJO. Similarly,
atmosphere-only simulations which continue to use monttdgn SST forcing are imposing an unnecessary
constraint on the ability of the model to generate organizatection in response to high-frequency SST
anomalies.

Further, our experiments suggest that including hightfesgy, realistic SST anomalies are necessary

for capturing the initiation and northward propagation &fISO events in an AGCM. Thus, the predictabil-
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ity of active and break events in such a model must be in pametibn of the accuracy of these anomalies.
Fu et al. (2007) recently showed an increase in the NPISGqiadility timescale of nearly one week in

a coupled model over an AGCM. Many short- and medium-rangahvee prediction models, however, are
AGCMs with persistent SST anomalies. Without either arradgve ocean or a technique for adding high-
frequency SST perturbations, these models will likely faipredict the frequency and intensity of NPISO
events. In this case, an interactive ocean need not be naratmixed-layer scheme (e.g., Woolnough et al.
2007), as the response of the Indian Ocean on intraseasmeakcales is likely to be dominated by thermo-
dynamic processes. Future work will examine the impact dfragla mixed-layer scheme to an AGCM on

NPISO predictability.

5. Summary and Conclusions

Our ensembles of HadAM3 simulations forced with OSTIA SS&mdnstrated that an AGCM could
respond to accurate, high-frequency SST forcing to organimvection and generate NPISO-like variabil-
ity. We noted in Section 3a that the members of the Daily efermmontained substantially more power
in 30-50 day precipitation than the members from the Mongnlgemble. Figure 5 demonstrated this con-
clusively; it also showed that the Daily ensemble matchesGRCP analysis remarkably well. Not all
members of the Daily ensemble contained appropriate ars@dfiimtraseasonal power, but the inclusion of
realistic, daily SST anomalies allowed more ensemble mesrthecontain this power than in the Monthly
ensemble. The key result here, then, is that while HadAM3didalways respond to daily SST forcing by
organizing NPISO-like variability in convection, the dabST forcing significantly improved the chances
that an individual ensemble member would produce suchhititja(over monthly mean SST forcing).

Not only did the members of the Daily ensemble reproduce rateuntraseasonal precipitation vari-
ability twice as frequently than the Monthly-ensemble memsbbut those that showed an organization and
propagation to the convection that resembled the NPISOaraRCP analyses. Even when an integration

forced with monthly mean SSTs produced substantial intism®al variability in precipitation, this was not
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organized into a coherent, northward-propagating NPISéhtevTaken together, these results and those
from the previous paragraph indicate that daily SST for@ag induce an atmosphere-only model to pro-
duce accurate amounts of 30-50 day power in precipitatiomfare frequently than monthly mean SST
forcing, and to organize that variability into coherent wective events that move northwards with a phase
speed that agrees with the NPISO.

Even with accurate, daily SST forcing, our AGCM still colded the rainfall too readily over the
warmest sea-surface temperatures (Figure 6). This is éettdiontrast with observations, which have con-
sistently shown that the strongest convection is assatiatth cooling SSTs; warm SSTs are associated
with NPISO break events and suppressed convection (e.gndrMvVang 2004; Klingaman et al. 2007). The
incorrect phase relationship is likely due to the lack ofifegecks between convection and the ocean surface,
which is an intrinsic failure of atmosphere-only models wisimulating tropical intraseasonal variability
and which cannot be resolved by improving the SST forcing diso possible that this failure is due to the
HadAM3 convection scheme responding too readily to the waBws. Our results indicate that a coupled
model must be able to accurately represent the high-frequSS$T anomalies that are so critical to the
intraseasonal variability of convection and precipitatitligh-frequency SSTs play a key role in strength-
ening and maintaining the NPISO and so cannot be negleagdrdiess of whether they are being forced

in a atmosphere-only model or simulated in a coupled one.
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Figure 1. (a) The standard deviation in the June—Septendd&S) 30—70 day bandpass-filtered OSTIA
sea-surface temperatures (°C) used to force the Daily dslegand (b) the ratio of the standard deviation
shown in (a) between the forced SSTs for the two ensemblksn tas the Daily-ensemble SSTs divided
by the Monthly-ensemble SSTs. In (a) black line contourswsti® percentage of the total variability for

which the 30—70 day band accounts, with contours at 25%, 20%75%.
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Figure 2: (a) The ensemble-mean JJAS-mean precipitatien(mem day ') from the Daily ensemble; (b)
the climatological JJAS-mean precipitation rate (mmdayrom the IMD gridded rainfall data; (c) the dif-
ference in (a) between the Daily and Monthly ensemble, takahe Daily minus the Monthly ensemble; (d)
the ratio of the ensemble-mean standard deviation of 30ay®dndpass-filtered JJAS precipitation, taken
as the Daily ensemble divided by the Monthly ensemble. Gotck) dots indicate statistical significance

at the 5% (10%) level using an (c) two-tailed Studettsst and (d) a two-tailed F-test.
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Figure 3: The area-averaged precipitation rate (mnT4ptaken over all Indian land points (10-30°N, 70—
90°E) for (a) the Daily ensemble and (b) the Monthly enserfdiléblack) the individual ensemble members
and (red) the ensemble-mean. The yellow line gives the dhityatology from the all-India rainfall dataset

(1901-2005); the green line gives the all-India rainfail 2605.
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Figure 4. The ensemble-mean one-dimensional waveletftnansof (a,b) area-averaged precipitation
(mm day ') and (c,d) area-averaged sea-surface temperatures imttrem Bay of Bengal (15°—20°N,
85°-90°E), for (left column) the Daily ensemble and (rigbtuznn) the Monthly ensemble. The solid black
contours indicate the 90% and 95% confidence intervals sigaéd noise, while the dashed black contour

indicates the region outside of which edge effects distartrésults.
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Figure 5: Probability density function of the intraseadegy@awver metric for (solid line) the Daily ensemble,
(long dash) the Monthly ensemble, and (dash-dot) the 19906-2°x1°gridded, daily precipitation analyses

from GPCP. The value of this metric for 2005—the year of th&@ 88cing—is shown as a vertical, short-

dashed line.
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Figure 6: Lag correlations between the linear trend (11wdaglow) in longitude-averaged (80-90°E) rain-
fall and SST over JJAS for (a) the Daily ensemble, (b) the Mignensemble, and (¢) GPCP rainfall and

TMI SSTs from 1998—-2006. Grey shading indicates statissigmificance at the 5% level.
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Figure 7: The linear trend (11-day window) in longitude4agged rainfall (85-90°E; mm day) for (a) the
Daily ensemble mean, (b) the Monthly ensemble mean, (c+betmembers from the (left column) Daily
ensemble and (right column) Monthly column with values @& ihtraseasonal-power metric closest to the
most-probable value for the respective ensemble, andgiztRCP analysis for 2005. Note that (a) and (b)

have smaller contour intervals than the other panels.
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Figure 8: As in Figure 7, but for lead-lag correlations of 80-day bandpass-filtered longitude-averaged
rainfall (85—90°E), with the base point at 20°N. Contoues@mawn every 0.2, with negative contours dashed

and the zero contour line omitted. Grey shading indicaisssital significance at the 5% level.
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Figure 9: As in Figure 7, but for the three members from (leflumn) the Daily ensemble and (right
column) the Monthly ensemble with the value of the intraseatpower metric closest to the value for the

2005 GPCP analysis.
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Figure 10: As in Figure 8, but for the “observational membshown in Figure 9.
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