
6B.3   A NEW GLOBAL ANALYSIS OF PRECIPITATION 
  

Mathew R. P. Sapiano1*, Thomas Smith2 and Philip A. Arkin1 
 

1The Cooperative Institute for Climate Studies (CICS), University of Maryland, College Park, MD 
2NOAA/NESDIS Center for Satellite Applications and Research, College Park, MD 

 
1. INTRODUCTION
* 

The effect of climate change on the 
hydrological cycle is still largely unknown due to the 
complex mechanisms related to water in the 
atmosphere (amongst other things).  Paradoxically, 
changes in the hydrological cycle have the highest 
societal relevance since phenomena such as 
precipitation are crucial to life on Earth and the 
hydrological cycle is related to some of the most 
damaging extreme weather.  Crucial to the 
understanding of climate change effects is knowledge of 
recent global trends in hydrological parameters, which 
are more challenging to quantify than temperature 
trends.  There is a lack of agreement between the 
precipitation changes obtained from models and 
observed precipitation from satellites (Wentz et al. 2007) 
and from theoretical considerations (Allen and Ingram 
2002; Pall et al. 2007).  Global observations of 
precipitation, which are necessarily reliant on satellite 
estimates over the ocean, are often considered to be 
inadequate for climate studies due to issues with the 
length and homogeneity of such datasets.  Furthermore, 
the size of the trends are often too small to detect 
against the noisy background (which is only made 
worse by the additional noise in satellite estimates). 

Many merged multi-source global analyses of 
precipitation exist, including the well-known and 
commonly used Global Precipitation Climatology Project 
(GPCP; Adler et al. 2003) analysis and the CPC Merged 
Analysis of Precipitation (CMAP; Xie and Arkin 1997).  
Such datasets arose in response to the need for longer 
global time-series of precipitation and were designed to 
exploit all available information: gauges are superior 
over land but satellite estimates are required over ocean 
and sparsely sampled land.  The basic ethos of both 
GPCP and CMAP was to merge geostationary infra-red 
estimates (which start in 1979) with higher quality polar-
orbiting passive microwave estimates (which start in 
1987) and to apply a bias correction over land to make 
this estimate agree with the gauges. This approach 
allows such datasets to use the best data available to 
produce estimates of precipitation which are long, but 
can also lead to discontinuities, artifacts and 
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inhomogeneities in the longer record.  Such issues are 
caused by changes in the number and type of available 
sensors and can impact their suitability for investigation 
of long-term changes in global precipitation.  

An additional problem is that high latitude 
precipitation is poorly represented in these datasets 
since the available estimates originate from either 
gauges (which suffer from problems related to under-
catch of solid precipitation) or satellite data (which 
exhibit large errors at high latitudes due to ice-
contamination issues).  A solution to this problem is to 
use reanalysis data with the satellite/gauge estimates.  
This approach was tried in CMAP with the incorporation 
of NCEP/NCAR reanalysis data (Kalnay et al. 1996) but 
has been underused – probably due to the serious 
problems associated with the rainfall estimates from the 
NCEP/NCAR reanalysis.  Estimates from the European 
Centre for Medium Range Weather Forecasts (ECMWF) 
ERA-40 (Uppala et al. 2005) reanalysis have been 
shown to be superior to satellite estimates in the arctic 
due to the limitation of satellite estimates over snow/ice 
(Serreze et al. 2005; Su et al. 2006).  With the continued 
development of reanalysis data from multiple agencies, 
it is expected that such estimates will only improve and 
that their incorporation into merged precipitation 
products will become more commonplace. 

We have produced a new global analysis of 
precipitation which uses Optimum Interpolation (OI) to 
blend high quality passive microwave satellite data with 
ERA-40 reanalysis data.  The OI technique allows the 
satellite data to have greater weight in low latitudes and 
the reanalysis data to have higher weight in higher 
latitudes with a mix in mid-latitudes.  Thus, the new 
dataset exploits the strengths of the components.  The 
OI methodology also allows for the calculation of errors 
associated with the analysis, which are needed for 
many applications and can be used in climate studies.  
One such use of the new analysis is as a base-period 
for a new reconstruction of historical precipitation (Smith 
et al. 2008).  This paper outlines the data, methodology 
and preliminary results obtained with this approach and 
the prospects for future enhancements. 
 
2. DATA 
 

As stated above, the inputs for this analysis are 
precipitation estimates derived from polar-orbiting 
passive microwave instruments and reanalysis 
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precipitation estimates.  There are many different 
passive microwave estimates available but the longest 
record is that from the Defense Meteorological Satellite 
Program (DMSP) Special Sensor Microwave/Imager 
(SSM/I).  The SSM/I record starts in 1987 with a single 
sensor and has at least dual sensor coverage from 1992 
until present.  The local measurement times are fixed for 
each sensor although satellite drift leads to changes of 
up to one to two hours over several years.  The goal of 
the DMSP has been to maintain a sensor in orbit with a 
local equator crossing time of around 6am/pm 
(depending on whether the satellite is in its 
ascending/descending phase) with a second sensor 
with local crossing time around 8am/pm. It takes one 
day to get almost complete global coverage with a 
single sensor so an additional sensor yields the 
advantage of filling in the few gaps remaining from the 
first sensor and allows for many locations to be sampled 
twice.  The earliest SSM/I sensor was launched in 1987 
but suffered a system failure in 1990 so that one of the 
key channels for precipitation estimation was lost 
completely.  Estimates of precipitation from the SSM/I 
are available over this time, although they are of lower 
quality. 

Other passive microwave instruments are 
available such as the Tropical Rainfall Monitoring 
Mission (TRMM) Microwave Imager (TMI) and the 
Advanced Microwave Scanning Radiometer (AMSR).  
Whilst similar to the SSM/I, these instruments have 
different foot-prints, channels and orbits to the SSM/I 
data which would surely introduce discontinuities into 
the data which would present problems for its use in 
climate studies.  We therefore use only precipitation 
estimates from the SSM/I data although we do use all 
available sensors.  A consequence of this is that the 
sampling is increased during certain periods and so the 
accuracy of the data might be considered to be higher 
(this can be incorporated into the error estimates, but is 
not at present). 

There are several different methods for 
estimating precipitation from SSM/I including the 
Goddard Profiling algorithm (GPROF; Kummerow and 
Giglio 1994), the Unified Microwave Ocean Retrieval 
Algorithm (UMORA; Wentz 1997, Wentz and Spencer 
1998, Hilburn and Wentz 2007) and the NOAA/NESDIS 
algorithm (Grody 1991; Ferraro 1997).  As the name 
suggests, UMORA is restricted to oceans only whilst the 
other two are land and ocean.  All of these datasets 
utilize the same two techniques based on radiative 
transfer: emission and scattering estimates.  The 
emission estimation technique directly measures the 
emission from hydrometeors in the atmosphere, which 
requires a homogeneous background and is therefore 
unsuitable over land and coast.  The indirect scattering 
technique is based in the scattered radiation from ice 
particles in clouds and works over any background 
(ocean or land) but is inferior to the emission technique.  
Careful analysis of the available datasets showed that 
the recently reprocessed UMORA V6 was superior over 
the ocean and has the added benefit of careful inter-
calibration between sensors.  Over land, GPROF 
(Version 6.5 for SSM/I) was found to be superior to the 

NOAA/NESDIS algorithm although it should be noted 
that this is not the most recent version of the GPROF 
algorithm (the most recent version has currently only 
been re-processed to 1997).  For the current analysis, 
we have used GPROF over land and a combination of 
Wentz and GPROF over the ocean.  The combination 
was done using the OI technique and was designed to 
minimize discontinuities between oceans and land.  It is 
expected that the choice of data will be re-visited in the 
future as improvements are made to algorithms, 
although the SSM/I record will remain the primary 
satellite input.  

The GPROF data were obtained from the 
NASA Goddard Space Flight Center website on a 0.5° 
grid at the original sub-daily timings. Ambiguous flags 
were developed for these data (George Huffman, 
personal communication) which are applied to the 
original data to remove pixels contaminated with 
snow/ice.  Once this mask is applied, the data are 
accumulated to produce monthly means on a 2.5° grid 
(in mm day-1).  The UMORA data were downloaded 
from the Remote Sensing Systems (RSS) website as 
daily, 0.5° averages.  A simple mask is applied to 
remove any data that is unrealistically high (presumably 
due to contamination by snow/ice) before the data are 
accumulated to monthly means on a 2.5° grid (in mm 
day-1). 

There are several different reanalysis products 
available, although we have started by using only the 
ERA-40 analysis which runs from 1958 to 2002.  This 
decision was largely motivated by the evidence that the 
precipitation estimates from this dataset possess skill at 
high latitudes although we expect to be able to use the 
same technique with other data.  One obvious drawback 
to using this data is that it limits the dataset to 1987-
2002 despite the existence of SSM/I data from 1987-
2007.  The ECMWF is currently processing an “interim” 
version of their reanalysis which is based on ERA-40, 
but has small improvements which are expected to 
improve the precipitation.  Other datasets are becoming 
available such as the Japanese Aerospace Exploration 
Agency’s (JAXA) JRA-25 (Onogi et al. 2007), the NASA 
Modern Era Reanalysis for Research and Applications 
(MERRA; Mike Bosilovich, NASA/GMAO, personal 
communication) and NOAA expects to initiate a CFSRR 
(Coupled Forecast System Reanalysis/Reforecast. 
personal communications, Hua-Lu Pan, NCEP), both for 
the period 1979 to present. 

The ERA-40 reanalysis data are obtained 
directly from the ECMWF as six-hourly total forecast 
precipitation accumulations which are totaled to yield a 
monthly precipitation value.  The overlapping period of 
SSM/I and ERA-40 thus constrains the length of these 
data currently to 1987-2002, but is expected to be 
extended with the use of other products in the near-
future.   
 
3. Methodology 
 
The input data are combined using an OI (e.g. see 
Reynolds and Smith 1994) which estimates a value at a 
point from a weighted combination of the surrounding 



points.  The weights for the surrounding points are 
calculated by considering their spatial correlation with 
each other and the point to be estimated, as well as 
their noise-to-signal ratio.  The spatial correlation is 
estimated using Gaussian functions and is here set to 
have a fixed e-folding scale of 2.5° to minimize spatial 
smoothing in the OI.  The relative noise-to-signal ratio is 
calculated through comparison with GPCP and is given 
by 
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where r2 is the correlation between the input data and 
GPCP.  Since GPCP cannot be considered the truth, 
this method essentially relies on the assumption that 
differences (and, therefore, low correlations) between 
GPCP and the input data occur in areas where noise is 
higher in the estimates and vice-versa.  For this 
analysis, we used a temporally fixed, smoothed zonal 
mean of the relative noise-to-signal of the inputs as 
shown in Figure1.  Using this technique, the zonal mean 
noise-to-signal ratio for ERA-40 is approximately 
constant, whilst the noise-to-signal ratio for SSM/I is 
higher in the high-latitudes and lower at the equator. 
This pattern means that ERA-40 is given higher weight 
at high latitudes and the SSM/I estimates are given 
higher weight at the equator, which agrees with the 
hypotheses on the relative merits of the inputs at 
different locations.  Since the input data are all on the 
same regularly spaced grid, and the spatial correlation 
scale is fixed, the weights are dominated by the relative 
signal-to-noise ratio and the SSM/I data are favored in 
the tropics, the ERA-40 data are favored at higher 
latitudes and a gradual mix of the two sources occurs in 
between. 
 

Figure 1: Noise-to-signal ratios obtained by comparison
with GPCP. 
 
 The usual methodology for an OI is that a 
search radius is chosen around the point to be 
estimated and if the initial radius does not contain 
enough points, then the search radius is extended.  
However, in this case ERA-40 data exists in every grid-
point so that the initial three-by-three search area never 

needs to be extended.  It is unusual for missing data in 
the SSM/I record except in over very dry areas where it 
is assumed that there is no rain (although these rare 
points would be estimated from ERA-40 data) and over 
snow/ice.  Since ERA-40 is preferred at high latitudes, 
the existence of missing data over snow/ice is not 
problematic.  The other important period which contains 
missing SSM/I data is during the period of technical 
problems with the first SSM/I sensor which affected the 
land retrievals; these data are estimated using ERA-40 
only. 
 Before the OI is carried out, the two SSM/I 
estimates are merged using Optimal Averaging with the 
noise-to-signal ratios shown in fig. 1.  Once this 
combined SSM/I is produced, new noise-to-signal ratios 
are calculated (which are almost identical to those in 
fig.1) and the procedure is repeated to merge ERA-40 
and the combined SSM/I.  The OI is performed on the 
raw monthly means of the inputs and the weights are 
normalized to ensure their addition to unity.  This initial 
product is available as a monthly mean on a 2.5° grid 
from July 1987 until August 2002. 
 
4. RESULTS 
 
a)

b)

Figure 2: Mean precipitation from the OI for (a) 
December-February and (b) June-August  in mm day-1. 
 

Figure 2 shows the December-February and 
June-August mean precipitation from the OI.  The 
pattern and magnitude of global precipitation matches 
expectations with the main features present, including 
the ITCZ, the storm tracks, the dry subtropical high 
pressure zones and precipitation associated with 
monsoonal circulations.  Note that the OI produces a 
value for every grid point, although the quality of the 



estimates might vary.  As already stated, an advantage 
of the OI is that an estimate of the error in the output 
datasets is calculated as part of the procedure.  Here, 
errors from systematic data biases are not considered.  
The error estimate is normalized by the total variability 
in the data, hence, this formulation of the error is a 
proportion where zero denotes high skill and unity 
denotes no skill.  The mean for December-February and 
June-August of the normalized error is shown in Figure 
3.  In this case, the error estimates are highly reflective 
of the input noise-to-signal ratios used to calculate the 
weights since most other parameters where more-or-
less constant over the regular grid.  Fig. 3 shows the 
highest skill lies over the tropical oceans where the 
SSM/I data is of the highest quality. At higher latitudes, 
the data is of lower quality and there is almost no skill in 
the Antarctic.  Tropical land masses also have 
surprisingly low skill, due to the low variance over dry 
desert areas (see fig. 1). 
 
a) 

b) 

Figure 3: Mean normalized error estimates from the OI 
for (a) December-February and (b) June-August. 
 
 Assessment of the skill of this dataset is 
somewhat challenging since the true state of oceanic 
global precipitation is only known from satellite sources 
which all use the SSM/I data.  One way of assessing the 
skill is to compare to gauge data over land such as 
those used in GPCP and the independent Climate 
Prediction Center (CPC) PREC-L (Chen et al. 2002). 
Anomaly correlations for the OI compared with these 
two datasets is shown in Figure 4; note that the GPCP 
analysis is very similar to the gauges over land but is 
highly reliant on the satellite estimates over the ocean. 
Fig. 4a and 4b show very similar correlations, with poor 
performance over the Sahara and the Antarctic (both of 

these deficiencies are manifested in the error estimates 
of fig. 3) although the quality of the gauges is 
questionable in these areas.  In general, correlations 
between the OI and both gauge analyses are around 
0.8-0.9 and higher over parts of India, China and 
Russia, but lower over significant orography and some 
coastal areas such as over Indonesia. 
 
a)

b)

Figure 4: Anomaly correlation between the OI and (a) 
CPC PREC-L and (b) GPCP. 
 
 One of the useful outcomes from this work may 
be the adoption of these methodologies and perhaps 
these inputs by the GPCP in the next generation of their 
monthly precipitation product.  Figure 5 shows the 
December-February correlation (on the raw data, not 
the anomalies as was shown in fig. 4) between the 
GPCC gauge data (which is used in GPCP) with the OI 
and the GPCP multi-satellite (GPCP MS) product. The 
GPCP MS is an interim GPCP product which is the 
combination of all the satellite data; this product is then 
bias-corrected to be consistent with the GPCC gauges 
to obtain the final GPCP product.  Differences between 
the GPCP MS  should occur either because of the use 
of newer input precipitation estimation algorithms or 
because of the additional reanalysis data, with the latter 
being more likely to make a large impact.  Fig. 5 shows 
that the OI has higher correlations with the GPCC 
gauge data particularly in the Northern Hemisphere high 
latitudes.  Such skill at high latitudes must be due to the 
inclusion of the reanalysis data and shows the clear 
value of including such data.  Whilst the OI has higher 
than GPCP MS correlations virtually everywhere 
(probably due to the use of newer inputs), low 
correlations against the raw DJF values are still 
observed over large parts of Africa and South America, 



both of which experience very low rainfall at this time of 
the year suggesting that the SSM/I data poorly 
represents very low rainfall amounts probably due virga. 

a) 

b) 

 the OI and (b) the

. SUMM

(see fig. 5) which would be solved through the 

 

Figure 5: Anomaly correlation between the GPCC
gauge analysis used in GPCP and (a)
GPCP multi-satellite interim product. 
 
5 ARY AND FUTURE PLANS 
 

A new analysis of global precipitation has been 
developed using Optimal Interpolation to blend passive 
microwave and reanalysis forecasts in such a way as to 
reduce the deficiencies of these inputs.  These early 
results are very promising with high correlations 
obtained when compared to existing gauge analyses.  In 
particular, the results show that reanalysis techniques 
have improved to the level where precipitation forecasts 
might be the most reliable source of information at high 
latitudes.  A further benefit of the OI procedure is the 
production of error estimates as part of the blending 
technique.  The error estimates reflect the expectation 
that the analysis would have highest skill over the 
tropics (particularly the tropical oceans where 
convective processes are more dominant). 
 There are still some deficiencies that need to 
be addressed in the analysis and the technique.  
Currently, the noise-to-signal ratio is calculated using 
GPCP, a similar product.  Whilst this approach does 
give a meaningful estimate of the relative error, it would 
be more satisfactory to use an independent global 
precipitation estimate (one that excludes SSM/I).  
Additionally, there are still some clear issues over land 

incorporation of gauges.  The inclusion of other data 
such as the IR data is also possible. 
 As was mentioned earlier, it is expected that 
newer, improved versions of the input datasets will 
become available over the coming months and years.  It 
is expected that a new version of GPROF will be 
available sometime in 2008-2009 which might be 
superior to the latest UMORA algorithm.  Perhaps more 
importantly, new reanalysis datasets are expected to 
become available with the ERA-Interim data expected in 
mid-2008 and the NSAS MERRA analysis expected 
sometime in 2008-2009.  We plan to further update this 
dataset based on the availability of these datasets, with 
the first “full” release of the data utilizing the ERA-
interim in 2008. 
 An important area for further work is the 
validation of these data in areas where we lack good 
data such as over the oceans and at high latitudes.  We 
plan to conduct further evaluation of the data by 
comparing it with the TAO/TRITON buoy array in the 
Tropical Pacific as well as the against some Arctic 
gauge data.  Whilst both of these datasets are limited, it 
is hoped that such results would inform the choice of 
input weights.  Finally, validation of climate phenomena 
is required to evaluate the representation ENSO. 
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