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ABSTRACT 
 

Land surface temperature (LST) is a key 
climatological variable that provides an estimate of 
energy available at the earth’s surface. The National 
Oceanic and Atmospheric Administration (NOAA) 
Advanced Very High Resolution Radiometer (AVHRR) 
has measured the earth’s brightness temperature, a 
function of LST, at moderate resolution (1.1- to 4.4. km) 
on a daily basis for nearly three decades. These data 
may potentially reveal LST trends related to climate 
change, however significant challenges must be 
overcome in developing the needed data set. For 
example, NOAA-AVHRR orbit and sensor 
characteristics impart temporal and spatial artifacts that 
impair product accuracy, especially in a long-term time 
series or Climate Data Record (CDR). In this article, we 
describe the main challenges in developing an accurate, 
temporally-normalized LST CDR from AVHRR. We 
especially consider the issues of global emissivity 
variability and its uncertainty, and introduce an 
emissivity data set in development that addresses these 
issues. 
 
1. INTRODUCTION 
 

Detecting climate change, understanding and 
attributing change to specific climate processes, and 
projecting climate impacts on the Earth system requires, 
among other capabilities, a long-term (many decades), 
consistent and comprehensive data series. Indeed, 
many climate trends are small and can only be 
distinguished from short-term variability through careful 
analysis of such Climate Data Records (CDRs). The 
National Research Council offered a more formal 
definition of a CDR, i.e., a “time series of measurements 
of sufficient length, consistency, and continuity to 
determine climate variability and change” (NRC, 2004). 

Land surface temperature (LST) provides 
insight into the biophysical processes which govern the 
balances of water and energy at the land surface, as 
well as variability and trends in the Earth System. The 
Global Climate Observing System (GCOS; 2003) 
identified LST as an essential supporting variable for 

land surface analysis, and the US Climate Change 
Science Program (CCSP; 2006) lists longwave surface 
energy budget (derived from LST) as one of its key 
external or feedback observations.  
In this article, we identify research issues for developing 
a multi-decadal LST CDR suitable for climate change 
analyses. 
 
2. AVHRR 
 

Development of a moderate resolution LST 
CDR can perhaps best be accomplished from the 
succession of NOAA polar orbiting satellites carrying the 
AVHRR (1981- to present). In addition to providing 
continuous observations with highly similar sensors, this 
afternoon-orbit series overlaps the more advanced 
NASA Aqua MODIS (2002- to present) sensor and will 
partially overlap the future VIIRS (expected service from 
2010- to ~2026). Such overlap allows extensive 
opportunities for both cross-sensor validation and near-
seamless time-series continuity beyond the AVHRR 
lifetime. Indeed, the VIIRS has very similar thermal 
infrared bandpasses to AVHRR.  
 
2.1 Sensor Characteristics Affecting CDR Quality 
 

AVHRR is a cross-track scanning system 
onboard the NOAA sun synchronous satellites. The 
overpass time (nominally 1330 h equator crossing) 
corresponds to a period where surface temperatures are 
both close to their daily peaks and are more temporally 
stable – desirable characteristics for climate science 
research, measurement signal-to-noise behavior, and 
observation stability. 

One of the greatest challenges in LST 
estimation is atmospheric correction. Given the water 
vapor continuum in thermal portion of the spectrum, the 
relatively wide bandpass AVHRR measurements 
(compared to the more contemporary MODIS) are more 
vulnerable to atmospheric contamination. Further, each 
AVHRR in the series has slightly different spectral 
response functions. The differences require that 
algorithm and ancillary database (e.g., emissivity) 
development be unique but consistent for the respective 
sensors. 
 
3. DEVELOPING AN AVHRR CDR ALGORITHM 
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A CDR algorithm must work well with all 
instruments in the multisensor time series, must be 
accurate and robust over all global environmental 
conditions, and must be computationally efficient. 
Although several LST algorithm types exist (Hook et al., 
2006), the split window approach is most commonly 
used with AVHRR given the sensor’s limited thermal 
bandset. With split window algorithms, the radiative 
transfer effects in the infrared are linearized as a 
function of measurements in two or more infrared bands, 
observation sampling geometries and (generally) 
surface emissivity. Split window approaches require 
prior information about surface emissivity. Yu et al. 
(2008) recently intercompared many commonly-used 
algorithms for potential use in CDR generation. 

 
3.1 Key Challenges 

 
Several factors must be addressed in developing 

an AVHRR CDR algorithm, including water vapor 
correction, emissivity correction, consistent upstream 
processing (calibration, geolocation and cloud clearing), 
temporal variability, and sun-view variability. Below, we 
focus on three that are among the most challenging: 1) 
temporal normalization of measurements, 2) angular 
normalization of measurements, and 3) 1) global 
emissivity data and their development. 
 
3.2 Temporal normalization 
 
 A particular challenge with AVHRR data is 
caused by the drift of the satellite platforms to later 
equatorial crossing times (from 1330 to >1630 h). The 
drift causes systematic biases in both shortwave and 
thermal IR measurements (Privette et al., 1994). This 
drift is particularly troublesome for LST, since its 
impacts may incorrectly suggest large-scale surface 
cooling during the lifetime of a given sensor. AVHRR 
thermal data suffer from a second time-related bias 
since each swath spans about 2 hours in local 
observation time for scans near the equator (this time 
difference increases with latitude). Assuming a typical 
earth diurnal temperature cycle, locations across a 
scene are therefore sampled at different points on the 
diurnal cycle.  

Multiple correction approaches (Gutman, 1999; 
Jin and Treadon, 2003) have been proposed to address 
the orbital drift effect. For example, Susskind et al. 
(1997) recently described a Fourier Series correction 
developed by fitting sounder-derived LST vs. time-of-
day for all NOAA polar orbiting satellites. The resulting 
functions can then used to adjust AVHRR LST retrievals 
from drifted satellites to a fixed time of day (e.g., 1330; 
see Pinheiro et al., 2006b, for details). Each of these 
methods requires assumptions which tend to be violated 
on a per-pixel basis. To date, the different methods for 
temporal correction have not been compared, however 
this step is critical if surface temperature climatic trends 
are to be detected. Temporal correction is also required 
for proper co-calibration with MODIS and VIIRS, and the 
overlapping periods of AVHRR with these sensors 
provides an excellent opportunity for testing time-

normalization schemes since the resulting LST 
estimates can be compared with the non-drifted MODIS 
or VIIRS observations 
 
3.3 Angular-normalization 
 

Recently, Pinheiro et al. (2004) revealed 
significant directional effects (angular anisotropy) in 
AVHRR-derived LST products. Contrary to emissivity 
microscopic anisotropy, the LST structural anisotropy 
stems from the different proportions of surface 
components (each with a distinct temperature) observed 
by a sensor at different sun-view geometries. Indeed, 
that study found ‘hot spot’ values (where the sun and 
view directions coincide to eliminate observable 
shadows) up to 9 K greater than nearby non-hot spot 
directions in AVHRR LST values over African savannas. 
Recent results from the GOES program (Yu, personal 
communication, 2007) corroborate these results with 
geostationary data. 

Potentially, directional effects can be modelled 
such that the LST product could be normalized to the 
nadir direction. For example, the Modified Geometric 
Projection (MGP) model (Pinheiro et al, 2006a) 
estimates directionally-dependent scene LST. Its input 
fields include surface structural information (e.g., tree 
cover fraction, tree crown width, etc.), observation 
information (e.g., sun-view geometry) and endmember 
temperatures (e.g., tree crown temperature) as input. 
The vegetation structural information required for this 
model is increasingly available globally (e.g., MODIS 
continuous fields product or space-based LIDAR 
products). However, we know of no globally applicable 
approach for independently determining endmember 
temperatures. Improving this or other approaches to 
correct LST angularly anisotropy will likely require a 
concerted effort. 

 
3.4 Surface Emissivity 

 
We recently estimated the sensitivity of nine 

published algorithms to emissivity errors by determining 
the partial derivatives of LST to emissivity (Yu et al., 
2008). The results suggest that, under typical conditions, 
modest emissivity errors (e.g., 0.01) can lead to 
significant LST errors (2 K). 

Several remote sensing methods have been 
proposed to estimate emissivity (e.g., Becker & Li, 1990; 
Van de Griend & Owe, 1993; Becker & Li, 1995), 
however these tend to require many spectral bands 
(unavailable with AVHRR) or atmospheric data, are 
computationally expensive, and have mixed results.  

Therefore, most current split window algorithms use 
values obtained by associating laboratory emissivity 
data with land cover maps. For example, the MODIS 
split window algorithm uses modified laboratory data 
from Snyder et al. (1998) together with the MODIS land 
cover product (MOD12Q1). These approaches do not 
accommodate within-class variability. Pinheiro et al 
(2006c) recently addressed the latter shortfall by 
estimating a pixel’s effective emissivity across the 
African continent as the spatially-weighted ensemble of 



its endmember emissivities, where an “endmember” is 
defined as a class of scene components assumed to 
have the same emissivity (e.g., woody vegetation or tree 
crowns, herbaceous background, and bare soil 
background). The endmember cover fractions are 
determined from the MODIS-derived Vegetation 
Continuous Fields product of Hansen et al. (2003). The 
resulting emissivity maps include both inter- and intra-
class variability. This method was recently applied 
globally. 

Nevertheless, these maps represent spatial 
variability only. Methods to incorporate temporal 
variability (e.g., from meteorology, seasonality and 
vegetation phenological changes) are less mature. We 
are aware of only one operational approach: the official 
MODIS LST split window algorithm (Wan and Dozier, 
1996) includes separate green and senescent emissivity 
maps.  

To address both spatial and temporal variability, 
we recently developed two global emissivity maps 
corresponding to the locally limiting conditions of 
maximally green and senescent vegetation (see Figure 
1, Figure 2) following the method described in Pinheiro 
et al. (2006c). We then generated monthly emissivity 
maps using a temporal weighting approach based on 
local normalized leaf area index (LAI). A 6-year MODIS 
LAI climatology was used for this purpose (R. Myneni, 
personal communication, 2007). Other vegetation 
related products such as the normalized difference 
vegetation index (NDVI) are also being evaluated for 
this purpose.  

Finally, many studies (e.g., Lagourde and Kerr, 
1993; Sobrino et al., 2005; Wong et al., 1996) have 
shown that emissivity varies with view angle, both at the 
microscopic and macroscopic level. The latter effect is 
in part due to the different proportions of surface 
endmembers observed at different viewing geometries, 
similar to the LST effect previously described. In a 
modeling study, Yu et al. (2006) found that use of a 
constant nadir emissivity with wide field-of-view sensors 
can cause LST retrieval errors up to 1.0 K at large (>45 
deg.) view angles.. 

Little work has been done so far in the community 
to correct for the angular effect. The official MODIS split 
window algorithm accounts for directional emissivity by 
modulating laboratory emissivity values at high view 
zenith angles (only). We recently developed a different 
approach based on the MGP model (Pinheiro et al., 
2006a). The model predicts the proportions of tree 
crown, background and soil observable by the satellite. 
If the emissivity of these endmembers is known (e.g., 
from a laboratory emissivity library), the aggregate pixel 
emissivity can be computed for any observation 
direction. Undoubtedly, other approaches exist and an 
intercomparison study would be valuable.  

 
4. CONCLUSIONS 
 

A continuous nearly 30 year record of afternoon 
global brightness temperature data exists from the 
NOAA AVHRR family of polar orbiting sensors. These 
potentially can be developed into a Land Surface 

Temperature (LST) Climate Data Record that addresses 
GCOS and CCSP needs, however, complex challenges 
remain in its development. We described three issues 
requiring particular attention, including, 1) correction of 
LST temporal variability arising from orbital drift and the 
varying local observation times of pixels across wide 
swaths, 2) development of corrections for LST angular 
anisotropy and 3) development of improved emissivity 
maps which vary continuously with time and space. 
Requisite emissivity maps are currently in development 
at NOAA’s National Climatic Data Center. Satisfactory 
resolution of these issues will likely provide a data set 
capable of revealing the small but persistent trends 
generally associated with climate change signals. 
 
5. REFERENCES 
 
1. Becker, F. and Li, Z-L. (1990), Towards a local split 
window method over land surfaces. International 
Journal of Remote Sensing, 11(3): 369-393. 
 
2. Becker, F. and Li, Z-L. (1995), Surface temperature 
and emissivity at various scales: definition, 
measurement and related problems. Remote Sensing 
Reviews, 12: 225-253. 
 
3. Climate Change Science Program (2006), Climate 
Change Science Program Strategic Plan Chapter 12. 
Observing and Monitoring the Climate System, 
published by the US Climate Change Science Program, 
Washington, DC 20006 
 
3. Coll, C. Caselles, V., Galve, J., Valor, E., Niclos, R., 
Sanchez, J., and Rivas, R. (2005) Ground 
measurements for the validation of land surface 
temperatures derived from AATSR and MODIS data. 
Remote Sensing of Environment. 97, 288-300. 
 
4. Global Climate Observing System (2003), The 
Second Report on the Adequacy of the Global 
Observing Systems for Climate in Support of the 
UNFCCC, GCOS-82, April 2003 (WMO/TD No. 1143). 
Gutman, G.G. (1999), On the monitoring of land surface 
temperature with the NOAA/AVHRR: removing the 
effect of satellite orbit drift, International Journal of 
Remote Sensing, 20(17):3407-3413.  
 
5. Hansen, M.C., R. S. DeFries, J. R. G. Townshend, M. 
Carroll, C. Dimiceli, and R. A. Sohlberg (2003), Global 
Percent Tree Cover at a Spatial Resolution of 500 
Meters: First Results of the MODIS Vegetation 
Continuous Fields Algorithm" 9 September 2003, Earth 
Interactions 
 
6. Hook, S. and 43 coauthors (2006), Land surface 
temperature and emissivity Earth System Data Record 
(ESDR), available online from NASA Headquarters, 
Division of Earth Sciences, Washington. 
 
7. Hook, S. J., A. J. Prata, R. E. Alley, A. Abtahi, R. C. 
Richards S. G. Schladow and S Palmarsson (2003). 
Retrieval of Lake Bulk-and Skin-Temperatures using 



Along Track Scanning Radiometer (ATSR) Data: A 
Case Study using Lake Tahoe, CA. Journal of 
Atmospheric and Oceanic Technology, Vol. 20, No. 2, 
pp 534-548. 
 
8. Jin, M.L. and Treadon RE (2003), Correcting the orbit 
drift effect on AVHRR land surface skin temperature 
measurements. International Journal of Remote 
Sensing, 24 (22): 4543-4558. 
 
9. Lagrourde, J. P., and Y. Kerr, (1993). Experimental 
study of angular effects on brightness surface 
temperature for various types of surfaces. In 
Proceedings of the Workshop on Thermal Remote 
Sensing of the Energy and Water Balance Over 
Vegetation in Conjunction with Other Sensors. 
September 20-23, 1993, La Londe Les Maures, France, 
107-111. 
 
10. National Research Council (2004), Climate data 
records from environmental satellites, National 
Academy Press, Washington. 136 pp. 
 
11. Pinheiro, A.C., J.L. Privette and P. Guillevic (2006a), 
Modeling the observed angular anisotropy of land 
surface temperature in a Savanna, IEEE Transactions 
on Geoscience and Remote Sensing, Volume 44, Issue 
4, April 2006 Page(s):1036 – 1047, doi 
10.1109/TGRS.2005.863827.  
 
12. Pinheiro, AC, J. Descloitres, JL Privette, J. Susskind, 
L. Iredell and J. Schmaltz (2006b), Near real time 
retrievals of land surface temperature within the MODIS 
rapid response system, Remote Sensing of 
Environment, in press. 
 
13. Pinheiro, AC, R. Mahoney, JL Privette and CJ 
Tucker (2006c), Development of a daily long term 
record of NOAA-14 AVHRR land surface temperature 
over Africa, Remote Sensing of Environment, 
103(2):153-164. 
 
14. Pinheiro, A.C.T., J.L. Privette, R. Mahoney, and C.J. 
Tucker (2004). Directional effects in a daily AVHRR land 
surface temperature dataset over Africa. IEEE 
Transactions on Geosciences Remote Sensing, 42 (9), 
1,941-1,954. doi:10.1109/TGRS.2004.831886 
 
15. Privette, J.L., C. Fowler, G. A. Wick, D. Baldwin and 
W. J. Emery (1995), Effects of orbital drift on advanced 
very high resolution radiometer products: normalized 
difference vegetation index and sea surface 
temperature, Remote Sensing of Environment, 
53(3):164-171. 
 
16. Sikorski, Kealy and Emery (2002), Land Surface 
Temperature Algorithm Theoretical Basis Document, 
Version 5, SBRS Document #: Y2399, Raytheon 
Systems Company, Lanham, MD. 
 
17. Snyder, WC, Z. Wan, Y. Zhang, Y.-Z. Feng (1998), 
Classification-based emissivity for land surface 

temperature measurement from space, International 
Journal of Remote Sensing, 19(14):2753 – 2774. 
 
18. Sobrino, JA, J. C. Jiménez-Muñoz, W. Verhoef. 
2005. Canopy directional emissivity: Comparison 
between models. Remote Sensing of Environment, 99, 
304-314.  
 
19. Susskind, J., P. Piraino, L. Rokke, L. Iredell, and A. 
Mehta (1997), Characteristics of the TOVS Pathfinder 
Path A Dataset. Bulletin of the American Meteorological 
Society, 78, 1449-1472. 
 
20. Van de Griend, A.A. and Owe, M. (1993), On the 
relationship between thermal emissivity and the 
normalized difference vegetation index. International 
Journal of Remote Sensing, 14(6): 1119-1131. 
 
21. Wan, Z. (1999). MODIS Land-Surface Temperature 
Algorithm Theoretical Basis Document (LST ATBD) ver. 
3.3. 
 
22. Wan, Z., and Dozier, J. (1996). A generalized split-
window algorithm for retrieving land-surface 
temperature from space. IEEE Transactions on 
Geoscience and Remote Sensing, 34: 892-905. 
 
23. Wan, Z., Zhang, Y., QZhang, Q., Li, Z-L. (2002), 
Validation of the land-surface temperature products 
retrieved from Terra Moderate Resolution Imaging 
Spectroradiometer data. Remote Sensing of 
Environment, 83:163-180. 
 
24. Wong, T., P. Minnis, and C. H. Whitlock (1996): 
Anisotropy of surface-emitted radiation. IRS ‘96: Current 
Problems in Atmospheric Radiation, August 19-24, 1996, 
Fairbanks, Alaska, 457-460. 
 
25. Yu, Y., A. C. Pinheiro, J.L. Privette, Correcting Land 
Surface Temperature Measurements for Directional 
Emissivity Over 3-D Structured Vegetation, Proc. of the 
SPIE Remote Sensing and Modeling of Ecosystems for 
Sustainability, San Diego, August, 2006. 
 
26. Yu, Y., J. L. Privette, A. C. Pinheiro (2008), 
Evaluation of split window land surface temperature 
algorithms for climate data records, IEEE Trans. 
Geophys. Remote Sens., 46(1):179-192. doi: 
10.1109/TGRS.2007.909097. 
 
27. Zhou, L., R.E. Dickinson, Y. Tian, M. Jin, K. Ogawa, 
H. Yu H., and T. Schmugge (2003), A sensitivity study 
of climate and energy balance simulations with use of 
satellite derived emissivity data over Northern Africa and 
the Arabian Peninsula, Journal of Geophysical 
Research, 108 (D24), 4795, doi:10.1029/2003JD004083, 
2003.



 
 

 
 
Figure 1: Emissivity (near 10.5 microns) for maximally green phenological conditions globally. 
 
 

 
 
 
Figure 2: Difference of emissivities (near 10.5 microns) between maximally green and senescent conditions. 


