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1.  INTRODUCTION  

 

The goal of ensemble forecasting is to generate a sample 
of numerical forecasts that represent our knowledge 
about the possible evolution of a dynamical system. A set 
of ensemble forecasts must preferably reflect forecast 
uncertainty related to both initial value (analysis) and 
numerical model related errors. During the past 15 years, 
various perturbation methods have been developed to 
achieve these goals.  
    As for initial ensemble perturbations, at a general level 
it is accepted that they must constitute a sample taken 
from a probability density function (PDF) that represents 
our best knowledge about the state of the dynamical 
system (i.e., “analysis PDF”). Various initial perturbation 
methods differ in how they estimate the analysis PDF, 
and how they sample it.  
      The operational implementation of the first generation 
initial perturbation generation methods (Table 1 of Wei et 
al. 2008, referred to as W08): the Perturbed Observation 
(PO) method (Houtekamer  et al., 1996), the Total Energy 
norm based Singular Vector (TE-SV) method (Buizza and 
Palmer, 1995; Molteni et al., 1996) and the breeding 
method (BM, Toth and Kalnay, 1993; 1997) were all 
limited in that for various reasons the sample they 
produced was not consistent with the analysis PDF.  
     In general the initial perturbations in first generation 
ensemble prediction/forecast systems (EPS or EFS) do 
not fully represent the uncertainties in analysis, as one 
expects from an ideal EFS. They are not consistent with 
the data assimilation (DA) systems that generate the 
analysis fields. Comparisons of performance between the 
ECMWF and NCEP operational EFSs were described in  
Wei and Toth (2003). A  recent comprehensive summary 
of these first generation methodologies and their 
performance at ECMWF, MSC and NCEP can be found 
in Buizza et al. (2005). 
   With an increased emphasis on the use of the analysis 
PDF for initial ensemble perturbation generation, recently 
a new, second generation of techniques have emerged 
(Table 2, W08).  The research and experiments on using 
ensemble transform (ET) and ET with rescaling (ETR) for 
ensemble forecasts first started at NCEP before 2004, 
and the initial results were presented in the THORPEX 
Symposium in 2004 (Wei et al., 2005).  Since then, more  
experimental  results with ensembles using ET and ETR 
have been presented and documented in Wei et al. 
(2006b) and W08. The ETR method had been adopted 
and implemented successfully at NCEP on May 30, 2006 
for operational forecasts. Due to the limitations on 
computing resources at the time of the implementation, 

the NCEP global EFS ran only 56 ET-generated 
members for the four daily cycles at 00Z, 06Z, 12Z and 
18Z. For each cycle, only 14 members are integrated for 
the 16 day forecasts. The NCEP operational configuration 
has been switched to that described in Fig. 1 of this paper 
since March 27, 2007 after the arrival of new NCEP 
supercomputers in early 2007. In this paper, The 
methodology and some results from the ET and ET with 
rescaling  are  briefly summarized. 
     Another technique in the second generation is based 
on the Ensemble Transform Kalman Filter (ETKF, Bishop 
et al. 2001). Wang and Bishop (2003) used ETKF to 
generate ensemble perturbations in an idealized 
observation framework. It was further extended to an 
operational environment with the NCEP operational 
model and real-time observations by Wei et al. (2006a) 
(referred to as W06). Please note that the Hessian 
singular vector based technique (Barkmeijer et al., 1999) 
can also be classified as a second generation method if 
the Hessian-SV is computed with flow-dependent 
analysis PDF. It samples fastest growing directions for a 
specific lead time and norm. i.e. the Hessian-SV depends 
on a time interval you choose. Like TE-SV, the amplitude 
of initial Hessian SV has to be specified. The feedback 
from ensemble to the DA system was not explored and 
the Hessian-SV method has not been implemented 
operationally by any known numerical weather forecast 
centers so far. By using a much lower-order Lorenz 95 
model, Bowler (2006) compared different initial 
perturbation generation techniques including ETKF, error 
breeding, singular vector, random perturbation and 
ensemble Kalman filter methods. Using a 300-varaible 
Lorenz model, the author showed that EnKF performs 
best, the performance of ETKF with random perturbations 
is the next most skillful.  It was also found that neither the 
ETKF, error breeding nor singular vectors provided useful 
background information on their own. 
      We will compare the results based on the four 
methods: BM, ETKF, ET and ETR. All four schemes 
belong to the same class of methods based on concept of 
breeding, involving the dynamical cycling of ensemble 
perturbations. This is based on the observation that since 
a modern NWP analysis method strongly rely on short 
range forecasts (Toth and Kalnay, 1993). This is 
supported by Errico (2007) who found that: analysis error 
characteristics (e.g. statistics) are similar (to first 
approximation) to those of 6-hour forecast error. 
     In the ET and ETR methods, the initial perturbations 
are restrained by the best available analysis variance 
from the operational DA system and centered around the 
analysis field generated by the same DA system. In this 



 

 

way, the ensemble system will be consistent with the DA. 
The perturbations are also flow dependent and span 
maximum degrees of freedom within ensemble subspace. 
This will overcome some drawbacks in the current 
operational system resulting from paired perturbations 
(W06). Another advantage is that the ET/ETR technique 
is considerably cheaper than ETKF if the analysis 
variance information is available.  
     A common feature of the second generation 
techniques is that the initial perturbations are more 
consistent with the DA system. At NCEP we intend to 
develop an EFS that is consistent with the DA system that 
generates the analysis fields for the ensemble. This will 
benefit both EFS and DA systems. A good DA system will 
provide accurate estimates of the initial analysis error 
variance for the EFS, while a good, reliable EFS will 
produce accurate flow dependent background covariance 
for the DA system.   
     So far, no ensemble DA experiments have produced 
the analysis that is better than the product from the 
mature operational 3D/4D Var systems at major weather 
forecasting centers with operational observation data. 
Before ensemble DA shows satisfying performance, ETR 
with repositioning (i.e. perturbed ensemble states are 
centered about the analysis field) offers a good solution 
for consistent DA/EFS generation, with 2-way exchange 
of information.  Section 2 provides brief description of the 
ET formulation for initial perturbations. Section 3 presents 
some results from comparisons of ET/ETR with the NCEP 
operational bred perturbation-based ensemble system. 
Discussion and conclusions are given in Section 4.  
 

2. METHODOLOGY 

 

2.1. Basic formulation. 
Initial perturbations in the NCEP global EFS were 
generated by the breeding method with regional 
rescaling. This method is well established, documented 
and widely used. It dynamically recycles perturbations 
and is a nonlinear generalization of the standard method 
which has been widely used for computing the dominant 
Lyapunov vectors. A scientific description of the breeding 
method can be found in Toth and Kalnay (1993; 1997). 
Some limitations are that the variance is constrained 
statistically by a climatologically fixed analysis error mask 
and there is no orthogonalization between the 
perturbations due to the positive/negative paired strategy.  
    The ETKF formulation is based on the application of a 
Kalman filter, with the forecast and analysis covariance 
matrices being represented by k forecast and k analysis 
perturbations. The application of ETKF to ensemble 
forecasting can be found in Wang and Bishop (2003). 
More results about the characteristics of ETKF 
perturbations with NCEP real-time observations are 
described in W06. In the ETKF framework, the 
perturbations are dynamically cycled with 
orthogonalization in the normalized observational space. 
The ensemble variance is constrained by the distribution 
and error variance of observations.  However, there are 
still some challenging issues in the ETKF based 
ensemble with real observations, such as perturbation 
inflation. Flow dependent inflation factors are hard to 

construct due to the fact that the number and positions of 
observations change rapidly from one cycle to the next. 
Since the ensemble mean from ETKF has yet to be 
improved to the level of the analysis from a mature 
variational DA like the NCEP SSI (Parrish and Derber, 
1992), the perturbations generated by ETKF have to be 
centered around the analysis field from SSI. In addition, 
the ETKF is much more expensive than breeding in an 
operational environment with real-time observations.  
More details can be found in W06. 
     The ET method was formulated in Bishop and Toth 
(1999) for targeting observation studies. The detail 
mathematical descriptions of ET and ET with recalling for 
ensemble forecasting and implementation at NCEP are 
given in Wei et al. 2006b and 2008.  Here we just 
summarize the properties initial perturbations generated 
by ET with rescaling:  (a) The initial perturbations will be 
centered around the analysis field to avoid degrading the 
score of the ensemble mean. (b) They have simplex, not 
paired, structure. The ST, which preserves the analysis 
covariance, ensures that the initial perturbations will have 
the maximum number of effective degrees of freedom 
(e.g., W06). The variance will be maintained in as many 
directions as possible within the ensemble subspace. (c) 
The perturbations are uniformly centered and distributed 
in different directions. The more ensemble members we 
have, the more orthogonal the perturbations will become. 
It is shown that if the number of ensemble members 
approaches infinity, then the transformed perturbations 
will be orthogonal under this norm. (d) Like the other 
perturbation generation methods used in this study, the 
initial perturbations from ET have flow dependent spatial 
structure. (e) The covariance constructed from the initial 
perturbations is approximately consistent with the 
analysis covariance from the DA if the number of 
ensemble members is large.   
    Both ETKF and ET methods resemble breeding in that 
they both dynamically cycle the fastest growing nonlinear 
perturbations. Unlike the SV method where perturbations 
are defined in a linear sense using the tangent linear 
model, the bred vectors evolve according to the dynamics 
of nonlinear model. The bred vectors are generalizations 
of the dominant Lyapunov vectors. Dominant Lyapunov 
vectors together with the associated Lyapunov exponents 
are the fundamentals of nonlinear dynamical systems; 
they characterize the intrinsic predictability of a dynamical 
system (Toth and Kalnay, 1993; 1997).  The ET method 
produces perturbations along the fastest growing 
directions that are constrained by the initial analysis error 
variances. The ET method can be considered as an 
extension of the well-established breeding method. In the 
special case where there are only two ensemble 
members, ET and breeding will produce the same 
perturbations.   
 
2.5. Experimental setup 
 
Our experiments run from 31 Dec 2002 to 17 Feb 2003, 
however, our study will focus on the 32-day period from 
15 Jan 2003 to 15 Feb 2003.  There are 10 ensemble 
members in both the ETKF and breeding-based systems. 
The observations used for ETKF are from the 



 

 

conventional data set in the NCEP global DA system. 
This conventional data set contains mostly rawinsonde 
and various aircraft data, and wind data from satellites. 
Details about the comparison between ETKF and 
breeding can be found in W06. The ETKF results 
displayed in most figures are mainly for comparison with 
various ET experiments. We also ran 10-member ET 
experiments with and without rescaling to compare with 
our previous experiments with breeding and ETKF.  
    In addition, we test ET experiments with more 
members. In particular, we run an 80-member ET at 
every cycle. However, due to the computing resource limit 
only 20 members will be integrated for long forecasts. 
The other 60 members are used only for cycling 
(integrated to 6 hours). At every cycle, both ET and ST 
are imposed on all 80 members, followed by ST on the 20 
members used for the long forecasts. At different cycles, 
a different 20 members will be used for long forecasts. A 
schematic of this configuration is depicted in Fig. 1. All 
the ensembles are cycled every 6 hours in accordance 
with the NCEP DA system, in which new observations are 
assimilated in consecutive 6-hour time windows centered 
at 00, 06, 12 and 18 UTC. 
 
 

 
 
Fig.1. Schematic of the configuration of the 80-member 
ET-based ensemble experiment. At each cycle ET 
transformation is carried out in all 80 perturbations, 
followed by the ST transformation. ST is also imposed on 
the 20 perturbations that will be used for long-range 
forecasts. 
 

3. RESULTS FROM ET WITH RESCALING, ET, 

BREEDING AND ETKF ENSEMBLES 

 
3.1. Ensemble spread distribution 

     To understand the vertical distributions of energy 
spread for the ensembles using different generation 
schemes, we average the energy spread of all grid points 
at each level. In Fig. 2a we show the vertical distributions 
of energy spread for the analysis (thick) and forecast 
(thin) perturbations from ETR (solid), ET (dotted), 
breeding (dashed) and ETKF (dash-dotted) ensembles. 
There are 10 members in all the ensembles. The results 
show that the analysis and forecast perturbations have 
the largest spread in terms of energy between 600mb and 
200mb. However, the averaged rescaling factors remain 
very uniform at all levels. The average values of both 
analysis and forecast perturbation spreads, over all 
levels, are larger in the ETKF ensemble than in the other 

three ensembles. The relatively larger spread in the ETKF 
is because the innovation-based inflation factor method 
did not work as ideally with real observations as with 
simulated observations (W06).   
    Fig. 2b shows the energy spread distributions of 
analysis and forecast perturbations by latitude for 10-
member ensemble systems using ETR, ET, breeding and 
ETKF. Unlike the vertical distribution in Fig. 2a, the 
latitudinal distributions of energy spread from ET and 
ETKF are similar with lower energy spread values near 
the tropics where baroclinic instability is relatively low, 
and a high spread near the North Pole. In the Southern 
Hemisphere, the ET and ETKF ensembles energy spread 
have peak values at around 50 degrees south, close to 
the southern ocean track region. However, different 
distributions are found in the ETR and the breeding 
ensembles. The spread distributions in these two systems 
are similar except for some differences in the tropics. 
Both ETR and breeding have lower energy spread values 
mainly in the Southern Hemisphere; in particular, both 
attain a minimum in the southern-ocean storm track area. 
The failure by the ETR and the breeding ensembles to 
show higher spread in this region is related to the mask 
imposed on the system (Toth and Kalnay, 1997). Both 
ETR and breeding ensembles use the same rescaling 
method from the same mask. These results indicate that 
the mask used in our ensemble system needs to be 
improved. A more accurate time-dependent analysis error 
variance can be generated by a mature operational DA 
system like the NCEP 3-D VAR. 
       

 
Fig.2. Energy spread distributions of ET with rescaling 
(solid), ET without rescaling (dotted), breeding (dashed) 
and ETKF ensemble perturbations (thick: analysis; thin: 
forecast). All the ensembles have 10 members and 
values are averaged over the period 15 Jan. – 15 Feb. 
2003, with (a) vertical distribution as a function of 
pressure; (b) horizontal distribution by latitude. 
 
3.2. Forecast error covariance 

 



 

 

    One good measure of ensemble forecast performance 
is a direct comparison of the ensemble perturbations to 
the forecast errors. We have computed the values of a 
measure called perturbation versus error correlation 
analysis (PECA). PECA measures how well ensemble 
perturbations can explain forecast error variance. It 
evaluates the performance of ensemble perturbations and 
perturbation generation technique. Apart from the PECA 
values averaged from individual perturbations, we also 
compute the PECA for the optimally combined 
perturbations. To do this, we linearly combine all the 
forecast perturbations so that the final combined 
perturbation is closest to the forecast error. A 
minimization problem will need to be solved for this. More 
details are available in Wei and Toth (2003). 
    The PECA values for 500mb geopotential height for a 
10-member ETR (solid), ET (dotted), breeding (dashed) 
and ETKF (dash-dotted) are shown in Figs. 3a, b, c and d 
for the globe, Northern and Southern Hemispheres, and 
the tropics. In each panel, the PECA for the optimally 
combined perturbations and the PECA averaged from 
individual perturbations are displayed in thick and thin 
lines, respectively. 

 
 
Fig. 3. PECA values for ET with rescaling (solid), ET 
without rescaling (dotted), breeding (dashed) and ETKF 
(dash-dotted) ensembles with 10 members for (a) the 
globe; (b) Northern Hemisphere; (c) Southern 
Hemisphere and (d) the tropics. Shown in thick and thin 
lines are PECA from the optimally combined 
perturbations and average PECA from the individual 
perturbations, respectively.   
      In each of these regions, ETR (solid) has the highest 
average PECA values (thin lines) for short lead times, 
with breeding (dashed) next. The gap between ETR and 

breeding is even larger for the optimally combined 
perturbations (thick). This is due to the structural 
difference between the two methods.  The perturbations 
in ETR are simplex structures, while in breeding the 
positive/negative paired strategy is used. In a paired 
strategy, the effective number of degrees of freedom 
(EDF) of ensemble subspace is reduced by half by 
construction, while a simplex structure has a maximum 
EDF.  It is interesting to see that the PECA values for 
both optimally combined and individual averages are 
similar for ET and ETKF. This is related to the fact that ET 
and ETKF have similar latitudinal distributions of energy 
spread (Fig. 2).  
     

 
Fig. 4. PECA values for a 10-member ET with rescaling 
(solid), 10-member ET without rescaling (dotted), 20 of 80 
member ET with rescaling (dashed) and 20 of 80 member 
ET without rescaling (dash-dotted) ensembles for (a) the 
globe; (b) Northern Hemisphere; (c) Southern 
Hemisphere and (d) the tropics. Shown in thick and thin 
lines are PECA from the optimally combined 
perturbations and average PECA from individual 
perturbations, respectively.  
 
     It is noteworthy that the rescaling imposed on the ET 
perturbations improves PECA values in almost all the 
domains we have chosen, particularly for the lead times 
up to a few days.  In order to see the improvement in 
PECA from the increase of members, we compare a 10-
member ET and a 20-of-80-member ET (see Fig. 1 for 
the configuration). In Fig. 4, we show PECA values for the 
10-member ETR (solid) and ET (dotted), the 20-of-80-
member ETR (dashed) and ET (dash-dotted) for Northern 
Hemisphere, North America, Europe and the globe. 
Again, the average PECA from the individual members 
and that from the optimally combined perturbations are 
indicated by thin and thick lines, respectively.  It is clear 
that rescaling can increase the PECA value for a 20-



 

 

member ensemble as well (see thick dashed and dash-
dotted lines) as for a 10-member ET. Another message 
from this figure is that increasing the number of ensemble 
members will significantly increase the PECA value for 
optimally combined perturbations in all domains (thick 
solid vs. dashed line; dotted vs. dash-dotted). 
      Also plotted in Fig. 4 are the PECA values from the 
optimally combined perturbations for 80-member ETR 
(diamond) and ET (square) at a 6-hour lead time.  Since 
we have integrated only 20 members for the long 
forecasts due to computing resource limits, the remaining 
60 members are integrated for only 6 hours, for cycling. 
Again, rescaling increases the PECA values for the ET 
ensembles, especially for regions like North America, 
Northern Hemisphere and the globe.  The difference 
between ET ensembles with and without rescaling is 
smaller over Europe. The PECA value for ETR is about 
0.9 and 0.95 for North America and Europe, respectively. 
This means that the 80-member ET perturbations with 
rescaling can explain about 80% to 90% of forecast errors 
at 6-hour lead time if the analysis error is small and can 
be neglected.  In all domains, the optimally combined 
PECA values at a 6-hour lead time from the 80-member 
ET are much larger than those from 20 members.  This 
implies that the forecast error covariance at 6-hour lead 
times constructed from the 80-member ET forecast 
perturbations will be a very good approximation to the 
real background covariance matrix, which can be used to 
improve DA quality. In practice a covariance localization 
would have to be applied to ensemble before it is used in 
Wei and Toth (2003) compared ensemble perturbations 
(from both NCEP and ECMWF) with the NMC method 
vectors that are commonly used to estimate background 
error covariance (Parrish and Derber, 1992). It was found 
that both NCEP and ECMWF perturbations are better 
able to explain the forecast errors than their respective 
NMC method vectors.   
 
 3.3. Probabilistic forecasts 

 
In this section, we will look at the probabilistic scores of 
the ensemble experiments we have done. Probabilistic  
scores have been frequently used for describing the 
performance of different ensemble systems (Buizza et al., 
2005). Some scores, particularly different skill scores 
described in the following will depend on the reference 
forecast. These scores will be different if a different 
reference forecast is used. The most commonly used 
reference forecast is the climatology (Zhu et al., 2002; 
Toth et al., 2003; Buizza et al., 2005). In this paper, 
climatology is also used as reference forecast in 
computing the probabilistic scores for all ensemble 
schemes studied. 
     Since different probabilistic measures emphasize 
different aspects of ensemble forecasts, we will use 
several commonly used measures such as Brier Skill 
Score (BSS), Ranked Probability Skill Sores (RPSS), 
Economic Values (EV) and the area under the Relative 
Operating Characteristic (ROC). One commonly used 
measure in probabilistic forecasts is the Brier score (BS). 
BS can be decomposed into reliability, resolution and 
uncertainty components (Toth et al., 2003). However, it is 

the BSS that we normally prefer to use in measuring 
ensemble forecasts. BSS is a skill score based on BS, 
using  climatology as a reference forecast. A common 
extension of BS to multi-event situations is the Ranked 
Probability Score (RPS). Unlike in the BS, the squared 
errors are computed with respect to the cumulative 
probabilities of the forecast and observation vectors. As 
with BSS, the Ranked Probability Skill Score (RPSS) 
based on RPS can also be defined by using climatology 
as the reference forecast (Toth et al., 2003).  
 

 
Fig. 5. Averaged Brier Skill Score of 500 mb geopotential 
height over the Northern Hemisphere for 20 of 80 
member ET with rescaling (cross), 10-member ET with 
rescaling (open circle), 10-member breeding (full circle) 
and 10-member ETKF (open square) ensembles. 
 
       Economic value (EV) is based on a contingency table 
of losses and costs accrued by using ensemble forecasts, 
depending on the forecast and observed events (Zhu et 
al., 2002). It also uses climatology as a reference 
forecast. ROC is based on 2x2 contingency tables 
containing the relative fractions of hits, misses, false 
alarms and correct rejections. The ROC Area (ROCA) is 
the area under the ROC curve; the value of ROCA ranges 
from 1 for a perfect forecast to 0. A forecast with ROC 
area of 0.5 or less is not considered to be useful.  
     Fig. 5 shows the Brier Skill Score (BSS) for 500mb 
geopotential height over the Northern Hemisphere, which 
is calculated by using climatology as a reference forecast. 
For shorter forecast lead times at least up to day 7, and 
for ensembles with 10 members ETR is best, while ETKF 
is the worst and breeding is in the middle. If we use 20 
members out of the 80-member ETR as described in Fig. 
1, its BSS value is higher than all the other experiments 
at all forecast lead times.  
    Shown in Fig. 6 is the ROCA for the same experiments 
over the Northern Hemisphere. ROCA is a measure of 
discrimination. The results show that a 10-member ETR 
is better than 10-member breeding, while a 10-member 
ETKF has the lowest value of ROCA. Again, when the 
ensemble membership is increased to 20 members out of 
80-member ETR, the ROCA is significantly higher than 
for all the other three experiments with only 10 members.  
We have also computed the EV for all these ensemble 



 

 

systems, which is shown in Fig. 7.  In terms of EV, the 10-
member ETR is similar to the 10-member breeding, and 
both are better than the 10-member ETKF.  Again, the 20 
out of 80 member ETR is better than all the other 
ensembles. 

 
Fig.6. The same as Fig. 5, but for the relative operating 
characteristic area 
 
 
     
 

 
 
Fig. 7.  The same as Fig. 5, but for the economic value. 
 
    
4. DISCUSSION AND CONCLUSIONS 

  
    In this paper, we have described several experiments 
with four different initial perturbation generation 
techniques: breeding, ETKF, ET and ETR. All of these 
are based on the principle of the breeding method 
dynamically cycling nonlinear forecast perturbations. We 
have concentrated on the ensembles generated by ET 
and ETR, and compared them to NCEP operational 
breeding.  For scientific interest, in some figures we also 
include results with the ETKF from our previous study.  
Both ET and ETR are second generation techniques 
attempting to better link DA and EFS.  

       Based on our experiments with different methods, 
our findings can be summarized as follows: 

• The ET/ETR method is an extension of breeding 
and is similar to breeding in that they both 
dynamically cycle the perturbations. In an 
ensemble with only two members, both methods 
should produce the same results.   

• Initial perturbations from ET and ST have 
simplex, not paired, structure. The ST, which 
preserves the analysis covariance, ensures that 
the initial perturbations will have the maximum 
number of effective degrees of freedom. The 
variance is maintained in as many directions as 
possible within the ensemble subspace. The 
perturbations are uniformly centered and 
distributed in different directions. The more 
ensemble members we have, the closer to being 
orthogonal the perturbations will be. In the limit 
of infinite number of ensemble members, the 
perturbations will be exactly orthogonal. 

• An important finding from this study is the 
difference in geographical distribution of spread 
in energy as a function of latitude. The energy 
spread distribution for ET without rescaling is 
surprisingly similar to the ETKF, with lower 
values in the tropics and higher spread in the 
extra-tropics of both hemispheres. On the other 
hand, the energy spread for ETR and breeding 
have higher values in the tropics and lower 
values in the extra-tropics. The vertical 
distributions of energy spread for ETR and ET, 
breeding, and ETKF are similar. 

• PECA results show that ET perturbations can 
explain an amount of forecast error similar to the 
breeding and ETKF perturbations, while the ETR 
has higher PECA values than the other three 
perturbations types over all regions at shorter 
forecast lead times. For larger lead times, the 
gap gets smaller.  When the number of 
ensemble members is increased, the PECA 
value for the optimally combined perturbation is 
increased significantly.  ETR performs better 
than ET without rescaling independent of 
ensemble size. When 80 perturbations are used, 
optimally combined perturbations from ETR can 
explain about 80% to 90% of the forecast error 
at a 6-hour lead time over smaller regions like 
North America and Europe. This implies that the 
80-member ensemble may be able to provide an 
efficient background covariance for the DA 
system. 

• In terms of probabilistic forecast capability, ETR 
has higher scores than breeding and ETKF in 
BSS, ROCA, EV and RPSS for the same 
number of ensemble members. Increasing the 
number of ensemble members generally 
increases all of these scores. 

Our goal at NCEP is to build an EFS that is consistent 
with the DA system. The DA system provides an accurate 
analysis error variance for EFS in an operational 
environment using real observations, while the EFS can 



 

 

feed back the background covariance information into the 
DA system. This study is a step towards this goal.   
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