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1. INTRODUCTION

The goal of ensemble forecasting is to generate a sample
of numerical forecasts that represent our knowledge
about the possible evolution of a dynamical system. A set
of ensemble forecasts must preferably reflect forecast
uncertainty related to both initial value (analysis) and
numerical model related errors. During the past 15 years,
various perturbation methods have been developed to
achieve these goals.

As for initial ensemble perturbations, at a general level
it is accepted that they must constitute a sample taken
from a probability density function (PDF) that represents
our best knowledge about the state of the dynamical
system (i.e., “analysis PDF”). Various initial perturbation
methods differ in how they estimate the analysis PDF,
and how they sample it.

The operational implementation of the first generation
initial perturbation generation methods (Table 1 of Wei et
al. 2008, referred to as W08): the Perturbed Observation
(PO) method (Houtekamer et al., 1996), the Total Energy
norm based Singular Vector (TE-SV) method (Buizza and
Palmer, 1995; Molteni et al, 1996) and the breeding
method (BM, Toth and Kalnay, 1993; 1997) were all
limited in that for various reasons the sample they
produced was not consistent with the analysis PDF.

In general the initial perturbations in first generation
ensemble prediction/forecast systems (EPS or EFS) do
not fully represent the uncertainties in analysis, as one
expects from an ideal EFS. They are not consistent with
the data assimilation (DA) systems that generate the
analysis fields. Comparisons of performance between the
ECMWF and NCEP operational EFSs were described in
Wei and Toth (2003). A recent comprehensive summary
of these first generation methodologies and their
performance at ECMWF, MSC and NCEP can be found
in Buizza et al. (2005).

With an increased emphasis on the use of the analysis
PDF for initial ensemble perturbation generation, recently
a new, second generation of techniques have emerged
(Table 2, W08). The research and experiments on using
ensemble transform (ET) and ET with rescaling (ETR) for
ensemble forecasts first started at NCEP before 2004,
and the initial results were presented in the THORPEX
Symposium in 2004 (Wei et al., 2005). Since then, more
experimental results with ensembles using ET and ETR
have been presented and documented in Wei et al.
(2006b) and W08. The ETR method had been adopted
and implemented successfully at NCEP on May 30, 2006
for operational forecasts. Due to the limitations on
computing resources at the time of the implementation,

the NCEP global EFS ran only 56 ET-generated
members for the four daily cycles at 00Z, 06Z, 12Z and
18Z. For each cycle, only 14 members are integrated for
the 16 day forecasts. The NCEP operational configuration
has been switched to that described in Fig. 1 of this paper
since March 27, 2007 after the arrival of new NCEP
supercomputers in early 2007. In this paper, The
methodology and some results from the ET and ET with
rescaling are briefly summarized.

Another technique in the second generation is based
on the Ensemble Transform Kalman Filter (ETKF, Bishop
et al. 2001). Wang and Bishop (2003) used ETKF to
generate ensemble perturbations in an idealized
observation framework. It was further extended to an
operational environment with the NCEP operational
model and real-time observations by Wei et al. (2006a)
(referred to as WO06). Please note that the Hessian
singular vector based technique (Barkmeijer et al., 1999)
can also be classified as a second generation method if
the Hessian-SV is computed with flow-dependent
analysis PDF. It samples fastest growing directions for a
specific lead time and norm. i.e. the Hessian-SV depends
on a time interval you choose. Like TE-SV, the amplitude
of initial Hessian SV has to be specified. The feedback
from ensemble to the DA system was not explored and
the Hessian-SV method has not been implemented
operationally by any known numerical weather forecast
centers so far. By using a much lower-order Lorenz 95
model, Bowler (2006) compared different initial
perturbation generation techniques including ETKF, error
breeding, singular vector, random perturbation and
ensemble Kalman filter methods. Using a 300-varaible
Lorenz model, the author showed that EnKF performs
best, the performance of ETKF with random perturbations
is the next most skillful. It was also found that neither the
ETKEF, error breeding nor singular vectors provided useful
background information on their own.

We will compare the results based on the four
methods: BM, ETKF, ET and ETR. All four schemes
belong to the same class of methods based on concept of
breeding, involving the dynamical cycling of ensemble
perturbations. This is based on the observation that since
a modern NWP analysis method strongly rely on short
range forecasts (Toth and Kalnay, 1993). This is
supported by Errico (2007) who found that: analysis error
characteristics (e.g. statistics) are similar (to first
approximation) to those of 6-hour forecast error.

In the ET and ETR methods, the initial perturbations
are restrained by the best available analysis variance
from the operational DA system and centered around the
analysis field generated by the same DA system. In this



way, the ensemble system will be consistent with the DA.
The perturbations are also flow dependent and span
maximum degrees of freedom within ensemble subspace.
This will overcome some drawbacks in the current
operational system resulting from paired perturbations
(WO06). Another advantage is that the ET/ETR technique
is considerably cheaper than ETKF if the analysis
variance information is available.

A common feature of the second generation
techniques is that the initial perturbations are more
consistent with the DA system. At NCEP we intend to
develop an EFS that is consistent with the DA system that
generates the analysis fields for the ensemble. This will
benefit both EFS and DA systems. A good DA system will
provide accurate estimates of the initial analysis error
variance for the EFS, while a good, reliable EFS will
produce accurate flow dependent background covariance
for the DA system.

So far, no ensemble DA experiments have produced
the analysis that is better than the product from the
mature operational 3D/4D Var systems at major weather
forecasting centers with operational observation data.
Before ensemble DA shows satisfying performance, ETR
with repositioning (i.e. perturbed ensemble states are
centered about the analysis field) offers a good solution
for consistent DA/EFS generation, with 2-way exchange
of information. Section 2 provides brief description of the
ET formulation for initial perturbations. Section 3 presents
some results from comparisons of ET/ETR with the NCEP
operational bred perturbation-based ensemble system.
Discussion and conclusions are given in Section 4.

2. METHODOLOGY

2.1. Basic formulation.
Initial perturbations in the NCEP global EFS were
generated by the breeding method with regional
rescaling. This method is well established, documented
and widely used. It dynamically recycles perturbations
and is a nonlinear generalization of the standard method
which has been widely used for computing the dominant
Lyapunov vectors. A scientific description of the breeding
method can be found in Toth and Kalnay (1993; 1997).
Some limitations are that the variance is constrained
statistically by a climatologically fixed analysis error mask
and there is no orthogonalization between the
perturbations due to the positive/negative paired strategy.
The ETKF formulation is based on the application of a
Kalman filter, with the forecast and analysis covariance
matrices being represented by k forecast and k analysis
perturbations. The application of ETKF to ensemble
forecasting can be found in Wang and Bishop (2003).
More results about the characteristics of ETKF
perturbations with NCEP real-time observations are
described in WO06. In the ETKF framework, the
perturbations are dynamically cycled with
orthogonalization in the normalized observational space.
The ensemble variance is constrained by the distribution
and error variance of observations. However, there are
still some challenging issues in the ETKF based
ensemble with real observations, such as perturbation
inflation. Flow dependent inflation factors are hard to

construct due to the fact that the number and positions of
observations change rapidly from one cycle to the next.
Since the ensemble mean from ETKF has yet to be
improved to the level of the analysis from a mature
variational DA like the NCEP SSI (Parrish and Derber,
1992), the perturbations generated by ETKF have to be
centered around the analysis field from SSI. In addition,
the ETKF is much more expensive than breeding in an
operational environment with real-time observations.
More details can be found in W06.

The ET method was formulated in Bishop and Toth
(1999) for targeting observation studies. The detail
mathematical descriptions of ET and ET with recalling for
ensemble forecasting and implementation at NCEP are
given in Wei et al. 2006b and 2008. Here we just
summarize the properties initial perturbations generated
by ET with rescaling: (a) The initial perturbations will be
centered around the analysis field to avoid degrading the
score of the ensemble mean. (b) They have simplex, not
paired, structure. The ST, which preserves the analysis
covariance, ensures that the initial perturbations will have
the maximum number of effective degrees of freedom
(e.g., W06). The variance will be maintained in as many
directions as possible within the ensemble subspace. (c)
The perturbations are uniformly centered and distributed
in different directions. The more ensemble members we
have, the more orthogonal the perturbations will become.
It is shown that if the number of ensemble members
approaches infinity, then the transformed perturbations
will be orthogonal under this norm. (d) Like the other
perturbation generation methods used in this study, the
initial perturbations from ET have flow dependent spatial
structure. (e) The covariance constructed from the initial
perturbations is approximately consistent with the
analysis covariance from the DA if the number of
ensemble members is large.

Both ETKF and ET methods resemble breeding in that
they both dynamically cycle the fastest growing nonlinear
perturbations. Unlike the SV method where perturbations
are defined in a linear sense using the tangent linear
model, the bred vectors evolve according to the dynamics
of nonlinear model. The bred vectors are generalizations
of the dominant Lyapunov vectors. Dominant Lyapunov
vectors together with the associated Lyapunov exponents
are the fundamentals of nonlinear dynamical systems;
they characterize the intrinsic predictability of a dynamical
system (Toth and Kalnay, 1993; 1997). The ET method
produces perturbations along the fastest growing
directions that are constrained by the initial analysis error
variances. The ET method can be considered as an
extension of the well-established breeding method. In the
special case where there are only two ensemble
members, ET and breeding will produce the same
perturbations.

2.5. Experimental setup

Our experiments run from 31 Dec 2002 to 17 Feb 2003,
however, our study will focus on the 32-day period from
15 Jan 2003 to 15 Feb 2003. There are 10 ensemble
members in both the ETKF and breeding-based systems.
The observations used for ETKF are from the



conventional data set in the NCEP global DA system.
This conventional data set contains mostly rawinsonde
and various aircraft data, and wind data from satellites.
Details about the comparison between ETKF and
breeding can be found in WO06. The ETKF results
displayed in most figures are mainly for comparison with
various ET experiments. We also ran 10-member ET
experiments with and without rescaling to compare with
our previous experiments with breeding and ETKF.

In addition, we test ET experiments with more
members. In particular, we run an 80-member ET at
every cycle. However, due to the computing resource limit
only 20 members will be integrated for long forecasts.
The other 60 members are used only for cycling
(integrated to 6 hours). At every cycle, both ET and ST
are imposed on all 80 members, followed by ST on the 20
members used for the long forecasts. At different cycles,
a different 20 members will be used for long forecasts. A
schematic of this configuration is depicted in Fig. 1. All
the ensembles are cycled every 6 hours in accordance
with the NCEP DA system, in which new observations are
assimilated in consecutive 6-hour time windows centered
at 00, 06, 12 and 18 UTC.
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Fig.1. Schematic of the configuration of the 80-member
ET-based ensemble experiment. At each cycle ET
transformation is carried out in all 80 perturbations,
followed by the ST transformation. ST is also imposed on
the 20 perturbations that will be used for long-range
forecasts.

3. RESULTS FROM ET WITH RESCALING, ET,
BREEDING AND ETKF ENSEMBLES

3.1. Ensemble spread distribution

To understand the vertical distributions of energy
spread for the ensembles using different generation
schemes, we average the energy spread of all grid points
at each level. In Fig. 2a we show the vertical distributions
of energy spread for the analysis (thick) and forecast
(thin) perturbations from ETR (solid), ET (dotted),
breeding (dashed) and ETKF (dash-dotted) ensembles.
There are 10 members in all the ensembles. The results
show that the analysis and forecast perturbations have
the largest spread in terms of energy between 600mb and
200mb. However, the averaged rescaling factors remain
very uniform at all levels. The average values of both
analysis and forecast perturbation spreads, over all
levels, are larger in the ETKF ensemble than in the other

three ensembles. The relatively larger spread in the ETKF
is because the innovation-based inflation factor method
did not work as ideally with real observations as with
simulated observations (W06).

Fig. 2b shows the energy spread distributions of
analysis and forecast perturbations by latitude for 10-
member ensemble systems using ETR, ET, breeding and
ETKF. Unlike the vertical distribution in Fig. 2a, the
latitudinal distributions of energy spread from ET and
ETKF are similar with lower energy spread values near
the tropics where baroclinic instability is relatively low,
and a high spread near the North Pole. In the Southern
Hemisphere, the ET and ETKF ensembles energy spread
have peak values at around 50 degrees south, close to
the southern ocean track region. However, different
distributions are found in the ETR and the breeding
ensembles. The spread distributions in these two systems
are similar except for some differences in the tropics.
Both ETR and breeding have lower energy spread values
mainly in the Southern Hemisphere; in particular, both
attain a minimum in the southern-ocean storm track area.
The failure by the ETR and the breeding ensembles to
show higher spread in this region is related to the mask
imposed on the system (Toth and Kalnay, 1997). Both
ETR and breeding ensembles use the same rescaling
method from the same mask. These results indicate that
the mask used in our ensemble system needs to be
improved. A more accurate time-dependent analysis error
variance can be generated by a mature operational DA
system like the NCEP 3-D VAR.
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Fig.2. Energy spread distributions of ET with rescaling
(solid), ET without rescaling (dotted), breeding (dashed)
and ETKF ensemble perturbations (thick: analysis; thin:
forecast). All the ensembles have 10 members and
values are averaged over the period 15 Jan. — 15 Feb.
2003, with (a) vertical distribution as a function of
pressure; (b) horizontal distribution by latitude.

3.2. Forecast error covariance



One good measure of ensemble forecast performance
is a direct comparison of the ensemble perturbations to
the forecast errors. We have computed the values of a
measure called perturbation versus error correlation
analysis (PECA). PECA measures how well ensemble
perturbations can explain forecast error variance. It
evaluates the performance of ensemble perturbations and
perturbation generation technique. Apart from the PECA
values averaged from individual perturbations, we also
compute the PECA for the optimally combined
perturbations. To do this, we linearly combine all the
forecast perturbations so that the final combined
perturbation is closest to the forecast error. A
minimization problem will need to be solved for this. More
details are available in Wei and Toth (2003).

The PECA values for 500mb geopotential height for a
10-member ETR (solid), ET (dotted), breeding (dashed)
and ETKF (dash-dotted) are shown in Figs. 3a, b, cand d
for the globe, Northern and Southern Hemispheres, and
the tropics. In each panel, the PECA for the optimally
combined perturbations and the PECA averaged from
individual perturbations are displayed in thick and thin
lines, respectively.
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Fig. 3. PECA values for ET with rescaling (solid), ET
without rescaling (dotted), breeding (dashed) and ETKF
(dash-dotted) ensembles with 10 members for (a) the
globe; (b) Northern Hemisphere; (c) Southern
Hemisphere and (d) the tropics. Shown in thick and thin
lines are PECA from the optimally combined
perturbations and average PECA from the individual
perturbations, respectively.

In each of these regions, ETR (solid) has the highest
average PECA values (thin lines) for short lead times,
with breeding (dashed) next. The gap between ETR and

breeding is even larger for the optimally combined
perturbations (thick). This is due to the structural
difference between the two methods. The perturbations
in ETR are simplex structures, while in breeding the
positive/negative paired strategy is used. In a paired
strategy, the effective number of degrees of freedom
(EDF) of ensemble subspace is reduced by half by
construction, while a simplex structure has a maximum
EDF. It is interesting to see that the PECA values for
both optimally combined and individual averages are
similar for ET and ETKF. This is related to the fact that ET
and ETKF have similar latitudinal distributions of energy
spread (Fig. 2).
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Fig. 4. PECA values for a 10-member ET with rescaling
(solid), 10-member ET without rescaling (dotted), 20 of 80
member ET with rescaling (dashed) and 20 of 80 member
ET without rescaling (dash-dotted) ensembles for (a) the
globe; (b) Northern Hemisphere; (c) Southern
Hemisphere and (d) the tropics. Shown in thick and thin
lines are PECA from the optimally combined
perturbations and average PECA from individual
perturbations, respectively.

It is noteworthy that the rescaling imposed on the ET
perturbations improves PECA values in almost all the
domains we have chosen, particularly for the lead times
up to a few days. In order to see the improvement in
PECA from the increase of members, we compare a 10-
member ET and a 20-of-80-member ET (see Fig. 1 for
the configuration). In Fig. 4, we show PECA values for the
10-member ETR (solid) and ET (dotted), the 20-0f-80-
member ETR (dashed) and ET (dash-dotted) for Northern
Hemisphere, North America, Europe and the globe.
Again, the average PECA from the individual members
and that from the optimally combined perturbations are
indicated by thin and thick lines, respectively. It is clear
that rescaling can increase the PECA value for a 20-



member ensemble as well (see thick dashed and dash-
dotted lines) as for a 10-member ET. Another message
from this figure is that increasing the number of ensemble
members will significantly increase the PECA value for
optimally combined perturbations in all domains (thick
solid vs. dashed line; dotted vs. dash-dotted).

Also plotted in Fig. 4 are the PECA values from the
optimally combined perturbations for 80-member ETR
(diamond) and ET (square) at a 6-hour lead time. Since
we have integrated only 20 members for the long
forecasts due to computing resource limits, the remaining
60 members are integrated for only 6 hours, for cycling.
Again, rescaling increases the PECA values for the ET
ensembles, especially for regions like North America,
Northern Hemisphere and the globe. The difference
between ET ensembles with and without rescaling is
smaller over Europe. The PECA value for ETR is about
0.9 and 0.95 for North America and Europe, respectively.
This means that the 80-member ET perturbations with
rescaling can explain about 80% to 90% of forecast errors
at 6-hour lead time if the analysis error is small and can
be neglected. In all domains, the optimally combined
PECA values at a 6-hour lead time from the 80-member
ET are much larger than those from 20 members. This
implies that the forecast error covariance at 6-hour lead
times constructed from the 80-member ET forecast
perturbations will be a very good approximation to the
real background covariance matrix, which can be used to
improve DA quality. In practice a covariance localization
would have to be applied to ensemble before it is used in
Wei and Toth (2003) compared ensemble perturbations
(from both NCEP and ECMWF) with the NMC method
vectors that are commonly used to estimate background
error covariance (Parrish and Derber, 1992). It was found
that both NCEP and ECMWF perturbations are better
able to explain the forecast errors than their respective
NMC method vectors.

3.3. Probabilistic forecasts

In this section, we will look at the probabilistic scores of
the ensemble experiments we have done. Probabilistic
scores have been frequently used for describing the
performance of different ensemble systems (Buizza et al.,
2005). Some scores, particularly different skill scores
described in the following will depend on the reference
forecast. These scores will be different if a different
reference forecast is used. The most commonly used
reference forecast is the climatology (Zhu et al., 2002;
Toth et al, 2003; Buizza et al, 2005). In this paper,
climatology is also used as reference forecast in
computing the probabilistic scores for all ensemble
schemes studied.

Since different probabilistic measures emphasize
different aspects of ensemble forecasts, we will use
several commonly used measures such as Brier Skill
Score (BSS), Ranked Probability Skill Sores (RPSS),
Economic Values (EV) and the area under the Relative
Operating Characteristic (ROC). One commonly used
measure in probabilistic forecasts is the Brier score (BS).
BS can be decomposed into reliability, resolution and
uncertainty components (Toth et al., 2003). However, it is

the BSS that we normally prefer to use in measuring
ensemble forecasts. BSS is a skill score based on BS,
using climatology as a reference forecast. A common
extension of BS to multi-event situations is the Ranked
Probability Score (RPS). Unlike in the BS, the squared
errors are computed with respect to the cumulative
probabilities of the forecast and observation vectors. As
with BSS, the Ranked Probability Skill Score (RPSS)
based on RPS can also be defined by using climatology
as the reference forecast (Toth et al., 2003).
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Fig. 5. Averaged Brier Skill Score of 500 mb geopotential
height over the Northern Hemisphere for 20 of 80
member ET with rescaling (cross), 10-member ET with
rescaling (open circle), 10-member breeding (full circle)
and 10-member ETKF (open square) ensembles.

Economic value (EV) is based on a contingency table
of losses and costs accrued by using ensemble forecasts,
depending on the forecast and observed events (Zhu et
al, 2002). It also uses climatology as a reference
forecast. ROC is based on 2x2 contingency tables
containing the relative fractions of hits, misses, false
alarms and correct rejections. The ROC Area (ROCA) is
the area under the ROC curve; the value of ROCA ranges
from 1 for a perfect forecast to 0. A forecast with ROC
area of 0.5 or less is not considered to be useful.

Fig. 5 shows the Brier Skill Score (BSS) for 500mb
geopotential height over the Northern Hemisphere, which
is calculated by using climatology as a reference forecast.
For shorter forecast lead times at least up to day 7, and
for ensembles with 10 members ETR is best, while ETKF
is the worst and breeding is in the middle. If we use 20
members out of the 80-member ETR as described in Fig.
1, its BSS value is higher than all the other experiments
at all forecast lead times.

Shown in Fig. 6 is the ROCA for the same experiments
over the Northern Hemisphere. ROCA is a measure of
discrimination. The results show that a 10-member ETR
is better than 10-member breeding, while a 10-member
ETKF has the lowest value of ROCA. Again, when the
ensemble membership is increased to 20 members out of
80-member ETR, the ROCA is significantly higher than
for all the other three experiments with only 10 members.
We have also computed the EV for all these ensemble



systems, which is shown in Fig. 7. In terms of EV, the 10-
member ETR is similar to the 10-member breeding, and
both are better than the 10-member ETKF. Again, the 20
out of 80 member ETR is better than all the other
ensembles.
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Fig.6. The same as Fig. 5, but for the relative operating
characteristic area

Northern Hemisphere 500 mb Height (EV)

)

a0
o brsdngto
eito

Economic Value (EV)

o 1 2 3 z 5 5 7 8 9 0

Forecast Lead Time (day)

Fig. 7. The same as Fig. 5, but for the economic value.

4. DISCUSSION AND CONCLUSIONS

In this paper, we have described several experiments
with  four different initial perturbation generation
techniques: breeding, ETKF, ET and ETR. All of these
are based on the principle of the breeding method
dynamically cycling nonlinear forecast perturbations. We
have concentrated on the ensembles generated by ET
and ETR, and compared them to NCEP operational
breeding. For scientific interest, in some figures we also
include results with the ETKF from our previous study.
Both ET and ETR are second generation techniques
attempting to better link DA and EFS.

Based on our experiments with different methods,

our findings can be summarized as follows:

e The ET/ETR method is an extension of breeding
and is similar to breeding in that they both
dynamically cycle the perturbations. In an
ensemble with only two members, both methods
should produce the same results.

e Initial perturbations from ET and ST have
simplex, not paired, structure. The ST, which
preserves the analysis covariance, ensures that
the initial perturbations will have the maximum
number of effective degrees of freedom. The
variance is maintained in as many directions as
possible within the ensemble subspace. The
perturbations are uniformly centered and
distributed in different directions. The more
ensemble members we have, the closer to being
orthogonal the perturbations will be. In the limit
of infinite number of ensemble members, the
perturbations will be exactly orthogonal.

e An important finding from this study is the
difference in geographical distribution of spread
in energy as a function of latitude. The energy
spread distribution for ET without rescaling is
surprisingly similar to the ETKF, with lower
values in the tropics and higher spread in the
extra-tropics of both hemispheres. On the other
hand, the energy spread for ETR and breeding
have higher values in the tropics and lower
values in the extra-tropics. The vertical
distributions of energy spread for ETR and ET,
breeding, and ETKF are similar.

e PECA results show that ET perturbations can
explain an amount of forecast error similar to the
breeding and ETKF perturbations, while the ETR
has higher PECA values than the other three
perturbations types over all regions at shorter
forecast lead times. For larger lead times, the
gap gets smaller.  When the number of
ensemble members is increased, the PECA
value for the optimally combined perturbation is
increased significantly. ETR performs better
than ET without rescaling independent of
ensemble size. When 80 perturbations are used,
optimally combined perturbations from ETR can
explain about 80% to 90% of the forecast error
at a 6-hour lead time over smaller regions like
North America and Europe. This implies that the
80-member ensemble may be able to provide an
efficient background covariance for the DA
system.

e In terms of probabilistic forecast capability, ETR
has higher scores than breeding and ETKF in
BSS, ROCA, EV and RPSS for the same
number of ensemble members. Increasing the
number of ensemble members generally
increases all of these scores.

Our goal at NCEP is to build an EFS that is consistent
with the DA system. The DA system provides an accurate
analysis error variance for EFS in an operational
environment using real observations, while the EFS can



feed back the background covariance information into the
DA system. This study is a step towards this goal.
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