
1.3 ASSESSING PREDICTABILITY OF ATMOSPHERIC PREDICTABILITY WITH AN ENSEMBLE 
KALMAN FILTER   

Elizabeth Satterfield
*
 and Istvan Szunyogh 

University of Maryland, College Park, Maryland

 
1. INTRODUCTION

*
 

In this paper, the spatio-temporally changing nature of 
predictability is studied in a reduced resolution version 
of the model component of the National Centers for 
Environmental Prediction (NCEP) Global Forecast 
System (GFS), a state-of-the-art numerical weather 
prediction model. Uncertain initial conditions (analyses) 
are obtained by assimilating noisy simulated 
observations of the hypothetical "true" state and 
observations of the real atmosphere with the Local 
Ensemble Transform Kalman Filter (LETKF) data 
assimilation system of the University of Maryland. This 
data assimilation system also provides initial conditions 
for an ensemble of forecasts. Predictability of 
atmospheric predictability is assessed by investigating 
the dependence of the performance of the ensemble 
forecast system on the atmospheric flow in capturing the 
forecast uncertainties. We show that the larger the 
forecast error, the more certain that the ensemble can 
fully capture the space in which forecast errors evolve. 
We explain this behavior using the E-dimension, a 
diagnostic that was developed at the University of 
Maryland (Patil et al. 2001). 

The E-dimension characterizes the local complexity of 
dynamics in a high dimensional prediction model.  Patil 
et al. (2001) found that the lowest dimensional regions 
are often the regions of largest forecast uncertainty.  For 
these low dimensional regions,  prediction for short and 
mid range forecasts could be improved by improving 
prediction in a few phase space directions (Oczkowski 
et al. 2005).  Szunyogh et al. (2005) showed that for 
lower values of E-dimension, the ensemble more 
certainly captures the error in the forecasts that serve as 
the background (first guess) for the analysis.  Kuhl et al. 
(2007) found that, in the extratropics, fast error growth 
always leads to low E-dimension and therefore, to 
increased certainty that a greater portion of the forecast 
error is captured by the ensemble.  This study assumed 
a perfect model and used the Local Ensemble Kalman 
Filter (LEKF) scheme to assimilate randomly distributed 
simulated observations that provided a 10% 
observational coverage of the model grid points.  Thus 
the geographical distribution of forecast errors reflected 
the spatio-temporally changing nature of predictability in 
the model and not inhomogeneities of the observational 
coverage.  In this paper, we build on the findings of Kuhl 
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et al. (2007) by gradually adding realistic features to the 
observing network.  First, we account for the effects of 
an inhomogeneous observing system and then we add 
the impact of model errors by assimilating observations 
of the real atmosphere.  In what follows, uncertain initial 
conditions (analyses) are obtained by assimilating noisy 
simulated observations of the hypothetical "true" state 
and observations of the real atmosphere using the Local 
Ensemble Transform Kalman Filter (LETKF).  
 
The first formulation of the LETKF, the Local Ensemble 
Kalman Filter (LEKF) was proposed by Ott et al. (2002, 
2004).  The LEKF solves the Kalman filter equations 
locally in model grid space.  An analysis is obtained 
independently for each point, by considering the 
observations and background state from a local region 
centered at the given point.  For each point, the LEKF 
scheme provides an estimate of analysis uncertainty 
and generates an ensemble of analysis perturbations 
representative of the uncertainty at the given point.  The 
LETKF introduced by Hunt et al. (2007) includes 
changes to improve computational efficiency of the 
algorithm and to add flexibility when non-local 
observations are assimilated (Szunyogh et al. 2007).  In 
this study, similar to our previous work (Szunyogh et al. 
2008, and Kuhl et al. 2007) we carry out experiments 
with an implementation of the LETKF algorithm on a 
reduced resolution (T62 and 28 vertical levels) version 
of the model component of the National Centers for 
Environmental Prediction (NCEP) Global 
Forecast System (GFS).    
 
2. EXPERIMENT DESIGN 

 
In the first step of our experiments, we assimilate 
simulated observations of the hypothetical “true” 
atmospheric state at the locations of conventional 
observations of the real atmosphere.  These simulated 
observations are generated by adding random 
observational noise, created by using the standard 
deviation of the estimated observational error provided 
with each observation by NCEP, to the “true” grid point 
values of surface pressure, temperature, and two 
horizontal components of the wind vector.  The “true” 
states are generated by an integration of the GFS model 
at T62L28 resolution starting from an operational NCEP 
analysis truncated to T62L28 resolution.  The location 
and type of observations is obtained from a database 
that includes all observations operationally assimilated 
at NCEP between 000UTC 1 January 2004 – 000UTC 
15 February 2004, with the exception of satellite 
radiances, but including satellite derived winds.  We 
also excluded surface observations, except for the 
surface pressure.  In the second step, the observations 



of the real atmosphere, which were used to obtain the 
type and location for the simulated observations, were 
assimilated.  
 
For each data set, a state estimate is obtained at the 
native model resolution every 6hrs. Diagnostics are 
computed at a reduced 2.5º x 2.5º grid resolution.  We 
assimilate observations between 1 January 2004 0000 
UTC and 15 February 2004 0000 UTC.  In these 
experiments, multiplicative covariance inflation is used 
at each analysis step to increase the estimated analysis 
uncertainty to compensate for the loss of ensemble 
variance due to sampling errors, the effects of 
nonlinearities and model errors.  The parameters of the 
LETKF used in this experiment are the following: 

• The ensemble has k=40 members. 

• Observations are considered in a 800km 
horizontal radius of the grid point, where the 
state is estimated. 

• Observations have equal weight within a 
500km radius of the given grid point, beyond 
which the weight of the observations tapers 
linearly to zero at 800km. 

• Observations are considered in a vertical patch 
radius centered at the grid point.  This layer 
has depth 0.35 scale height between model 
levels 1  to 15 and gradually increases to 2 at 
the top of the model atmosphere. 

• For the simulated observations taken at 
realistic locations, the covariance inflation is 
2.5% at all vertical levels in the SH extratropics 
and 10% in the NH extratropics.  In the 
Tropics, the covariance inflation varies from 
2.5% to 7.5% 

• For the conventional observations of the real 
atmosphere, the covariance inflation tapers 
from 25% at the surface to 20% at the top of 
the model atmosphere in the SH extratropics 
and from 50%-30% in the NH extratropics, and 
changes smoothly in the tropics (between 25ºS 
and 25ºN) from the values of the SH 
extratropics to the values of the NH 
extratropics  

• For both data sets, surface pressure is 
assimilated at the first model level and 
temperature, and zonal and meridional winds 
are assimilated at all 28 model levels. 

 
Deterministic forecasts are started from the ensemble 
mean twice daily and output every 12 hours.  In addition 
to the state estimate, this analysis scheme also 
generates an ensemble of analysis perturbations that 
represent the estimated uncertainty in the state 
estimate.  These analysis perturbations serve as 
initial conditions for an ensemble of forecasts.  
Ensemble forecasts are started at 0000UTC daily and 
output every 12 hours.  Both the deterministic forecast 
and the ensemble forecasts are carried out to a two 
week lead time.   
 
3. FORECASTS ERRORS 

 

Forecast error statistics are computed by comparing the 
deterministic forecasts to the “true” states.   For the 
forecasts started from analyses generated by 
assimilating simulated observations in realistic locations, 
the “truth” is taken to be an integration of the GFS 
model starting from the operational NCEP analysis at 
0000 UTC 1 January 2004.  Forecasts started from 
analyses generated by assimilating conventional data 
are verified using high resolution operational NCEP 
analyses truncated to 2.5º x 2.5º resolution. The NCEP 
analyses were generated using Spectral Statistical 
Interpolation (SSI) with the version of the GFS model at 
T62L28 resolution and the observational data set used 
in our LETKF experiments.  Forecast error statistics are 
generated for the 36-day period, 0000 UTC 11 January 
2004 – 0000 UTC 15 February 2004.   
 
First, we compare the absolute error in the meridional 
wind component at 500 hPa for each forecast lead time.  
Plots of the absolute error are obtained by plotting the 
time averaged distance between the forecast and the 
“true” states at each grid point.  Figure 1 shows the time 
mean absolute error at analysis time and at the 72-hour 
forecast lead time for all three experiments.  The results 
obtained by assimilating simulated observations in 
randomly placed locations (Kuhl et al. 2007) show that 
the largest analysis errors are in the Tropics and 
smallest analysis errors are found in regions of mid-
latitude storm tracks, in agreement with Szunyogh et al. 
(2005). Forecast errors become dominant in the storm 
track regions within 48-72 hours.  In comparison, when 
simulated observations are placed in realistic locations, 
the results show analysis errors which tend to reflect 
observation density.  The lowest errors are found over 
continents in the Northern Hemisphere and highest 
errors over Antarctica and in the oceanic region 
between Cape Horn and the Antarctic Peninsula. As 
forecast lead time increases, we see error growth in the 
poles and extratropics.  We see strong similarities in the 
structure of errors at analysis time and for short term 
forecasts in both experiments that assimilate 
observations in realistic locations. These results indicate 
that observation density plays a more important role 
than model error in determining the spatial distribution of 
short term forecast errors, in agreement with Szunyogh 
et al. (2007).  The results obtained by assimilating 
conventional observations of the real atmosphere show 
that the magnitude of the forecast error is almost double 
the forecast error found in the experiments which used 
simulated observations.  In all three experiments, we 
find rapid growth of forecast errors in the mid-latitude 
storm track regions, which become the dominant region 
of forecast error by the 72hr lead time. 
 
4. E-DIMENSION, EXPLAINED VARIANCE, AND 
FORECAST ERROR 

 
In order to explore the performance of the ensemble in 
capturing the forecast uncertainty, the explained 
variance diagnostic is used.  Explained variance is the 
fraction of forecast error that is contained in the space 
spanned by the ensemble, after projecting the forecast 



error on ensemble space. Formally, it is calculated by 
taking the square of the projection of forecast error on 
ensemble space and then normalizing by the square of 
the forecast error (Kuhl et al. 2007).  Explained variance 
has a maximum value of one, when the forecast error 
projects entirely onto the space spanned by the 
ensemble, and a minimum value of zero, when the 
forecast error falls completely outside of the ensemble 
space. 
 
E-dimension is a spatiotemporally evolving measure of 
the effective number of spatial degrees of freedom in a 
set of ensemble perturbations (Oczkowski et al. 2005).  
In other words, the E-dimension measures the effective 
dimension of the space spanned by a set of ensemble 
perturbations (Oczkowski et al. 2005).  To calculate the 
E-dimension statistic, we follow the method presented in 
Oczkowski et al. (2005) and Kuhl et al. (2007), and 
transform the ensemble perturbations such that the 
square of the Euclidean norm of the transformed 
perturbations has dimensions of energy.  We then 
define k local vectors consisting of ensemble 
perturbations for each dynamic variable in a local 
region. Here, the local region is defined, as in Kuhl et al. 
(2007), by all grid point variables in a 5x5 horizontal grid 
(at 2.5º x 2.5º grid resolution) and the entire column of 
the model atmosphere.  A (Vxk) matrix B, whose 

columns consist of k local vectors, is then formed (V is 
the number of grid point variables in each region). A 
singular value decomposition is performed on that 
matrix.  The E-dimension statistic is computed as a 
statistic on the singular values (Oczkowski et al.  2005). 
Numerically, the formula for E-dimension is: 
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Where σi , i=1,…,k are the singular values of the matrix 

B and ii λσ = , where iλ , i=1…k are nonnegative 

eigen values of the covariance matrix, C=B
T
B.  A low 

value of E-dimension would mean that the uncertainty 
captured by the ensemble is contained within only a few 
independently varying spatial patterns.  The maximum 
value of E-dimension, which is equal to the number of 
ensemble perturbations, would occur if the uncertainty 
was evenly distributed in independently varying spatial 
patterns. 
 
All three experiments show a similar geographic 
structure and evolution of E-dimension (Figure 2).  E-
dimension is higher in the Tropics than in the 
extratropics and decreases with forecast time 
throughout the entire 5-day forecast period.  The 
decrease is most rapid in the storm track region in all 
three experiments.  Not surprisingly, the results for the 
two experiments which use realistically placed 
observations are more similar to each other than to the 

results from the randomly placed simulated 
observations and show a lower E-dimension at analysis 
time.  As for forecast errors, observation density has a 
greater impact on the structure and evolution of E-
dimension than does model error.   
 
E-dimension and explained variance have a strong 
negative correlation (Szunyogh et al. 2005). The lower 
the E-dimension, the greater the probability that 
explained variance is high (Kuhl et al. 2007).  This 
relationship is illustrated by the joint probability 
distribution function (JPDF) shown in Figure 3.  The 
JPDF is obtained by calculating the number of 
occurrences in each bin defined by ∆E ×  ∆EV, where 
∆E denotes the bin increment for E-dimension and ∆EV 
denotes the bin increment for the explained variance.  
The number of occurrences is then normalized by 
∆E× ∆EV× n, where n is the total sample size, equal to 
the total number of grid points in a geographic region 
multiplied by the total number of verification times. This 
normalization ensures that the integral of the plotted 
values over all bins is equal to one.  We find that, 
independent of experiment, lead time and geographic 
region, the lower the E-dimension, the more likely that 
explained variance is high.   As forecast lead time 
increases, low values of E-dimension have a greater 
probability of corresponding to high value of explained 
variance.  For the experiments which use realistically 
placed observations, we find lower values of E-
dimension at analysis time, which correspond to higher 
values of explained variance.  In addition, the values of 
E-dimension and explained variance have a slower 
evolution with lead time than for the experiment that 
uses randomly placed simulated observations.  The 
main difference for the experiments which use real 
observations is that values of explained variance never 
reach their maximum of 1 and instead saturate around 
0.9. 
 
The relationship between explained variance, E-
dimension and forecast error is illustrated in Figures 4 
and 5.  Figure 4 shows the joint probability distribution 
function for forecast error and explained variance for the 
500 hPa meridional wind component in the Northern 
Hemisphere extratropics.  The top panels show results 
obtained by assimilating randomly distributed simulated 
observations, the middle panels are for simulated 
observations in realistic locations, and the bottom 
panels are for conventional observations of the real 
atmosphere. Two panels are shown for each 
experiment: the left panel shows results at analysis time 
and the right panel shows results at 5-day forecast lead 
time.  When forecast error is large, we expect, based on 
earlier results, the ensemble to do a better job of 
capturing forecast error.  Both experiments that use 
realistically placed observations show higher lower and 
upper bounds of explained variance at analysis time 
than the third experiment that uses randomly placed 
observations.  For all experiments, the values of 
explained variance increase with forecast time, although 
more slowly for the experiment which uses observations 
of the real atmosphere.  Again, for the experiment which 



uses real observations we find a lower saturation point 
for explained variance.       
 
The relationship between explained variance and 
forecast error is explained by Figure 5, which shows the 
mean E-dimension for the bins in the JPDF for forecast 
error and explained variance.  Large forecast error leads 
to a greater likelihood of low E-dimension, and therefore 
to higher explained variance.  In the extratropics, we 
expect the ensemble to do a better job of capturing the 
space of uncertainty when forecast error is large.  
Interestingly, we see that the distribution of E-dimension 
with explained variance at analysis time is more similar 
for the experiments which assimilate realistically 
distributed observations, even though forecast and 
analysis error is almost twice as large for the experiment 
that assimilated observations of the real atmosphere.   
 
5. THE SPREAD-SKILL RELATIONSHIP 

 
The relationship between ensemble spread, which is 
measured by the ensemble standard deviation, and skill, 
measured by the absolute error of the ensemble mean 
forecast, is often used to evaluate ensemble 
performance.  The ability of the ensemble spread to 
predict mean forecast error is typically quantified by 
linear correlation (Whitaker and Loughe 1998).  It is 
widely believed that for a well designed ensemble 
prediction system this correlation should be high.  
However, even in “perfect model” experiments, the 
correlation between spread and skill is disappointingly 
small (Whitaker and Loughe 1998). If the error field is 
dominated by random errors, the expected correlation is 
close to zero (Szunyogh et al 2007). 
 
To explore the relationship between the ensemble 
spread and the skill of the ensemble mean forecast, we 
compute the Pearson correlation coefficient:  
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Here, n is equal to the number of spatial points in each 
region multiplied by the number of points in time.  Figure 
6 shows the correlation for ensemble spread and the 
ensemble mean forecast error calculated for the 
meridional wind component at 500hPa in three 
geographical regions. The top panel shows the results 
obtained by assimilating randomly distributed simulated 
observations, the middle panel is for simulated 
observations in realistic locations, and the bottom panel 
is for conventional observations of the real atmosphere.  
The top panel of Figure 6 shows analysis time 
correlations near zero for the extratropics in both 
hemispheres.  Here, 10% observational coverage is 
sufficient to remove errors with well defined structures.  
As errors grow, well defined structures develop, 
increasing the correlation.   The correlation reaches a 
maximum of 0.46 around the 96 hour lead time in the 
Northern Hemisphere extratropics.  In the Tropics and 

Southern Hemisphere extratropics, the errors continue 
to grow throughout the 120 hour period.  In the Tropics, 
there is a high correlation at analysis time, due to the 
insufficient data coverage to suppress the small scale 
errors in that region.  When simulated observations are 
placed in the locations of conventional observations, the 
correlation is much higher in the extratropics at analysis 
time, indicating that data coverage is insufficient to 
suppress errors correctly identified by the ensemble.  
The correlation at analysis time is the highest for the 
Southern Hemisphere extratropics, where data is 
sparse.  The correlation in the Northern Hemisphere 
extratropics continues to grow throughout the 120 hour 
period (maximum is reached at 144 hour lead time).  For 
conventional observations of the real atmosphere, the 
main difference is lower correlations at longer lead 
times, which is most likely due to the impact of model 
errors.  
 
6. DISCUSSION 
 

In this paper, we study the spatio-temporally changing 
nature of predictability in a reduced resolution version of 
the model component of the National Centers for 
Environmental Prediction (NCEP) Global Forecast 
System (GFS), a state-of-the-art numerical weather 
prediction model using the LETKF data assimilation 
scheme. Our experiment design addresses the issues of 
determining the influence of observational density and 
model error on predictability.   
 

• We find that observational density has a 
greater impact on the structure of analysis and 
forecast error than does model error.  Including 
the impact of model error has a greater 
influence on the magnitude of error than the 
structure of error. 

• Independent of experiment, lead time, and 
geographic region, the lower the E-dimension, 
the more likely the explained variance is high.  
Further, as forecast lead time increases, 
smaller values of E-dimension more certainly 
predict high explained variance. 

• In the extratropics, the ensemble does a better 
job of capturing forecast error when forecast 
error is high.  This behavior can be explained 
by the fact that high forecast error leads to low 
E-dimension.  We find this result to hold for 
both perfect model and the real atmosphere. 

• Realistic observation coverage, when only 
conventional (non-radiance) observations are 
considered, is not adequate to remove errors 
correctly identified by the ensemble at analysis 
time in the extratropics, leading to initially high 
correlations between ensemble spread and 
skill.  In contrast, a 10% randomly distributed 
observational coverage (Kuhl et al. 2007) 
shows initial correlations in the extratropics that 
are close to zero. 

• The main impact of model error on the 
correlation between ensemble spread and skill 
is lower correlation at longer lead times. 



 
Finally, we note that there is a discrepancy between the 
time periods used in this paper and in the results 
presented in Kuhl et al (2007).  The data used in this 
study come from the winter season of 2004, whereas 
the data in Kuhl et al. (2007) come from the winter 
season of 2000.  In order to make a more accurate 
comparison, we plan to repeat the experiment described 
in Kuhl et al. (2007) using data from 2004. 
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Figure 1: Time-mean absolute analysis/forecast error of the meridional wind component at the 500 hPa pressure 
level.  Results are shown for the analysis (left) and the 72-hour forecast (right) for experiments that assimilate 
randomly distributed simulated observations (top panel), simulated observations at the locations of conventional 
observations (middle panel), and conventional observations of the real atmosphere (bottom panel).  The average is 
taken over all forecasts started between 11 January 2004 0000UTC and 15 February 2004 0000UTC.  Note the 
different scale for the forecast errors in the bottom panels. 



 

 

 
 
Figure 2: Time-mean E-dimension.  Results are shown for the analysis (left) and the 120-hour forecast lead time 
(right) for experiments that assimilate randomly distributed simulated observations (top panel), simulated 
observations at the locations of conventional observations (middle panel), and conventional observations of the real 
atmosphere (bottom panel).  The average is taken over all forecasts started between 11 January 2004 0000UTC and 
15 February 2004 0000UTC. 



 

 

 
Figure 3: Joint probability distribution of the E-dimension and the explained variance in the NH extratropics.  The bin 

increments are 0.005 for the explained variance and 0.2 for the E-dimension.  Shown are the distributions for the 
analysis (left) and the 120-hour forecast lead time (right) for experiments that assimilate randomly distributed 
simulated observations (top panel), simulated observations at the locations of conventional observations (middle 
panel), and conventional observations of the real atmosphere (bottom panel).   
 

 



  

  

 

 

 
 
 
Figure 4: Joint probability distribution of the analysis/forecast errors and the explained variance.  The bin increments 
are 0.005 for the explained variance and 0.4 for the forecast error.  Shown are the distributions for experiments that 
assimilate randomly distributed simulated observations (top panel), simulated observations at the locations of 
conventional observations (middle panel), and conventional observations of the real atmosphere (bottom panel).  
Note the different scale for the forecast errors in the bottom panels. 
 
 
 
 

 



  

 
 

  

 
 
 
Figure 5: Color shades indicate the mean E-dimension for each nonempty bin in Figure 1.  Shown are the 
distributions for experiments that assimilate randomly distributed simulated observations (top panel), simulated 
observations at the locations of conventional observations (middle panel), and conventional observations of the real 
atmosphere (bottom panel).  Note the different scale for the forecast errors in the bottom panels. 
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Figure 6: Correlation between the absolute error of the ensemble mean forecast and the ensemble spread for the 
meridional wind component at 500 hPa.  The analyses are obtained by assimilating simulated observations at 
random locations (top panel), simulated observations at the location of the conventional observations of the real 
atmosphere (middle panel), and conventional observations of the real atmosphere (bottom panel).  Results are 
shown for three different geographical regions: Northern Hemisphere extratropics (blue), Southern Hemisphere 
extratropics (red), and the tropics (green).  The average is taken over all forecasts started between 11 January 2004 
0000UTC and 15 February 2004 0000UTC. 


